首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the critical challenges in predicting protein subcellular localization is how to deal with the case of multiple location sites. Unfortunately, so far, no efforts have been made in this regard except for the one focused on the proteins in budding yeast only. For most existing predictors, the multiple-site proteins are either excluded from consideration or assumed even not existing. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. For instance, according to the Swiss-Prot database (version 50.7, released 19-Sept-2006), among the 33,925 eukaryotic protein entries that have experimentally observed subcellular location annotations, 2715 have multiple location sites, meaning about 8% bearing the multiplex feature. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. Meanwhile, according to the same Swiss-Prot database, the number of total eukaryotic protein entries (except those annotated with "fragment" or those with less than 50 amino acids) is 90,909, meaning a gap of (90,909-33,925) = 56,984 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the blank, so far, all the existing methods for predicting eukaryotic protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Euk-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Euk-mPLoc is freely accessible to the public as a Web server at http://202.120.37.186/bioinf/euk-multi. Meanwhile, to support the people working in the relevant areas, Euk-mPLoc has been used to identify all eukaryotic protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited at the same Web site via a downloadable file prepared with Microsoft Excel and named "Tab_Euk-mPLoc.xls". Furthermore, to include new entries of eukaryotic proteins and reflect the continuous development of Euk-mPLoc in both the coverage scope and prediction accuracy, we will timely update the downloadable file as well as the predictor, and keep users informed by publishing a short note in the Journal and making an announcement in the Web Page.  相似文献   

2.
Gao QB  Wang ZZ  Yan C  Du YH 《FEBS letters》2005,579(16):3444-3448
To understand the structure and function of a protein, an important task is to know where it occurs in the cell. Thus, a computational method for properly predicting the subcellular location of proteins would be significant in interpreting the original data produced by the large-scale genome sequencing projects. The present work tries to explore an effective method for extracting features from protein primary sequence and find a novel measurement of similarity among proteins for classifying a protein to its proper subcellular location. We considered four locations in eukaryotic cells and three locations in prokaryotic cells, which have been investigated by several groups in the past. A combined feature of primary sequence defined as a 430D (dimensional) vector was utilized to represent a protein, including 20 amino acid compositions, 400 dipeptide compositions and 10 physicochemical properties. To evaluate the prediction performance of this encoding scheme, a jackknife test based on nearest neighbor algorithm was employed. The prediction accuracies for cytoplasmic, extracellular, mitochondrial, and nuclear proteins in the former dataset were 86.3%, 89.2%, 73.5% and 89.4%, respectively, and the total prediction accuracy reached 86.3%. As for the prediction accuracies of cytoplasmic, extracellular, and periplasmic proteins in the latter dataset, the prediction accuracies were 97.4%, 86.0%, and 79.7, respectively, and the total prediction accuracy of 92.5% was achieved. The results indicate that this method outperforms some existing approaches based on amino acid composition or amino acid composition and dipeptide composition.  相似文献   

3.
Many species of Gram-negative bacteria are pathogenic bacteria that can cause disease in a host organism. This pathogenic capability is usually associated with certain components in Gram-negative cells. Therefore, developing an automated method for fast and reliable prediction of Gram-negative protein subcellular location will allow us to not only timely annotate gene products, but also screen candidates for drug discovery. However, protein subcellular location prediction is a very difficult problem, particularly when more location sites need to be involved and when unknown query proteins do not have significant homology to proteins of known subcellular locations. PSORT-B, a recently updated version of PSORT, widely used for predicting Gram-negative protein subcellular location, only covers five location sites. Also, the data set used to train PSORT-B contains many proteins with high degrees of sequence identity in a same location group and, hence, may bear a strong homology bias. To overcome these problems, a new predictor, called "Gneg-PLoc", is developed. Featured by fusing many basic classifiers each being trained with a stringent data set containing proteins with strictly less than 25% sequence identity to one another in a same location group, the new predictor can cover eight subcellular locations; that is, cytoplasm, extracellular space, fimbrium, flagellum, inner membrane, nucleoid, outer membrane, and periplasm. In comparison with PSORT-B, the new predictor not only covers more subcellular locations, but also yields remarkably higher success rates. Gneg-PLoc is available as a Web server at http://202.120.37.186/bioinf/Gneg. To support the demand of people working in the relevant areas, a downloadable file is provided at the same Web site to list the results identified by Gneg-PLoc for 49 907 Gram-negative protein entries in the Swiss-Prot database that have no subcellular location annotations or are annotated with uncertain terms. The large-scale results will be updated twice a year to cover the new entries of Gram-negative bacterial proteins and reflect the new development of Gneg-PLoc.  相似文献   

4.
Machine learning is a kind of reliable technology for automated subcellular localization of viral proteins within a host cell or virus-infected cell. One challenge is that the viral protein samples are not only with multiple location sites, but also class-imbalanced. The imbalanced dataset often decreases the prediction performance. In order to accomplish this challenge, this paper proposes a novel approach named imbalance-weighted multi-label K-nearest neighbor to predict viral protein subcellular location with multiple sites. The experimental results by jackknife test indicate that the presented algorithm achieves a better performance than the existing methods and has great potentials in protein science.  相似文献   

5.
Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called “pLoc-mGneg” for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to “iLoc-Gneg”, the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.  相似文献   

6.
Protein subcellular location prediction   总被引:20,自引:0,他引:20  
The function of a protein is closely correlated with its subcellular location. With the rapid increase in new protein sequences entering into data banks, we are confronted with a challenge: is it possible to utilize a bioinformatic approach to help expedite the determination of protein subcellular locations? To explore this problem, proteins were classified, according to their subcellular locations, into the following 12 groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. Based on the classification scheme that has covered almost all the organelles and subcellular compartments in an animal or plant cell, a covariant discriminant algorithm was proposed to predict the subcellular location of a query protein according to its amino acid composition. Results obtained through self-consistency, jackknife and independent dataset tests indicated that the rates of correct prediction by the current algorithm are significantly higher than those by the existing methods. It is anticipated that the classification scheme and concept and also the prediction algorithm can expedite the functionality determination of new proteins, which can also be of use in the prioritization of genes and proteins identified by genomic efforts as potential molecular targets for drug design.  相似文献   

7.
相似性比对预测蛋白质亚细胞区间   总被引:1,自引:0,他引:1  
王雄飞  张梁  薛卫  赵南  徐焕良 《微生物学通报》2016,43(10):2298-2305
【目的】对蛋白质所属的亚细胞区间进行预测,为进一步研究蛋白质的生物学功能提供基础。【方法】以蛋白质序列的氨基酸组成、二肽、伪氨基酸组成作为序列特征,用BLAST比对改进K最近邻分类算法(K-nearest neighbor,KNN)实现蛋白序列所属亚细胞区间预测。【结果】在Jackknife检验下,数据集CH317三种特征的成功率分别为91.5%、91.5%和89.3%,数据集ZD98成功率分别为93.9%、92.9%和89.8%。【结论】BLAST比对改进KNN算法是预测蛋白质亚细胞区间的一种有效方法。  相似文献   

8.
Prediction of the subcellular location of apoptosis proteins   总被引:4,自引:0,他引:4  
Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. Based on the concept that the subcellular location of an apoptosis protein is mainly determined by its amino acid sequence, a new algorithm for prediction of the subcellular location of an apoptosis protein is proposed. By using of a distinctive set of information parameters derived from the primary sequence of 317 apoptosis proteins, the increment of diversity (ID), the sole prediction parameter, is calculated. The higher predictive success rates than the previous other algorithms is obtained by the jackknife tests using the expanded dataset. Our prediction results show that the local compositions of twin amino acids and hydropathy distribution are very useful to predict subcellular location of protein.  相似文献   

9.
Proteins may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. For instance, among the 6408 human protein entries that have experimentally observed subcellular location annotations in the Swiss-Prot database (version 50.7, released 19-Sept-2006), 973 ( approximately 15%) have multiple location sites. The number of total human protein entries (except those annotated with "fragment" or those with less than 50 amino acids) in the same database is 14,370, meaning a gap of (14,370-6408)=7962 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the gap, so far all the existing methods for predicting human protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Hum-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Hum-mPLoc is freely accessible to the public as a web server at http://202.120.37.186/bioinf/hum-multi. Meanwhile, for the convenience of people working in the relevant areas, Hum-mPLoc has been used to identify all human protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Hum-mPLoc.xls". This file is available at the same website and will be updated twice a year to include new entries of human proteins and reflect the continuous development of Hum-mPLoc.  相似文献   

10.
Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time‐consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state‐of‐the‐art prediction methods. First, most of the existing techniques are designed to deal with multi‐class rather than multi‐label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi‐label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi‐label classifier called HPSLPred, which can be applied for multi‐label classification with an imbalanced protein source. For convenience, a user‐friendly webserver has been established at http://server.malab.cn/HPSLPred.  相似文献   

11.
MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  相似文献   

12.
Given a raw protein sequence, knowing its subcellular location is an important step toward understanding its function and designing further experiments. A novel method is proposed for the prediction of protein subcellular locations from sequences. For four categories of eukaryotic proteins the overall predictive accuracy is 82.0%, 2.6% higher than that by using SVM approach. For three subcellular locations of prokaryotic proteins, an overall accuracy of 89.9% is obtained. In accordance with the architecture of cells, a hierarchical prediction approach is designed. Based on amino acid composition extracellular proteins and intracellular proteins can be identified with accuracy of 97%.  相似文献   

13.
The function of protein is closely correlated with it subcellular location. Prediction of subcellular location of apoptosis proteins is an important research area in post-genetic era because the knowledge of apoptosis proteins is useful to understand the mechanism of programmed cell death. Compared with the conventional amino acid composition (AAC), the Pseudo Amino Acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, a novel approach is presented to predict apoptosis protein solely from sequence based on the concept of Chou's PseAA composition. The concept of approximate entropy (ApEn), which is a parameter denoting complexity of time series, is used to construct PseAA composition as additional features. Fuzzy K-nearest neighbor (FKNN) classifier is selected as prediction engine. Particle swarm optimization (PSO) algorithm is adopted for optimizing the weight factors which are important in PseAA composition. Two datasets are used to validate the performance of the proposed approach, which incorporate six subcellular location and four subcellular locations, respectively. The results obtained by jackknife test are quite encouraging. It indicates that the ApEn of protein sequence could represent effectively the information of apoptosis proteins subcellular locations. It can at least play a complimentary role to many of the existing methods, and might become potentially useful tool for protein function prediction. The software in Matlab is available freely by contacting the corresponding author.  相似文献   

14.
In the last two decades, predicting protein subcellular locations has become a hot topic in bioinformatics. A number of algorithms and online services have been developed to computationally assign a subcellular location to a given protein sequence. With the progress of many proteome projects, more and more proteins are annotated with more than one subcellular location. However, multisite prediction has only been considered in a handful of recent studies, in which there are several common challenges. In this special report, the authors discuss what these challenges are, why these challenges are important and how the existing studies gave their solutions. Finally, a vision of the future of predicting multisite protein subcellular locations is given.  相似文献   

15.
Prediction of protein subcellular location is a meaningful task which attracted much attention in recent years. A lot of protein subcellular location predictors which can only deal with the single-location proteins were developed. However, some proteins may belong to two or even more subcellular locations. It is important to develop predictors which will be able to deal with multiplex proteins, because these proteins have extremely useful implication in both basic biological research and drug discovery. Considering the circumstance that the number of methods dealing with multiplex proteins is limited, it is meaningful to explore some new methods which can predict subcellular location of proteins with both single and multiple sites. Different methods of feature extraction and different models of predict algorithms using on different benchmark datasets may receive some general results. In this paper, two different feature extraction methods and two different models of neural networks were performed on three benchmark datasets of different kinds of proteins, i.e. datasets constructed specially for Gram-positive bacterial proteins, plant proteins and virus proteins. These benchmark datasets have different number of location sites. The application result shows that RBF neural network has apparently superiorities against BP neural network on these datasets no matter which type of feature extraction is chosen.  相似文献   

16.
One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods.  相似文献   

17.
The location of a protein in a cell is closely correlated with its biological function. Based on the concept that the protein subcellular location is mainly determined by its amino acid and pseudo amino acid composition (PseAA), a new algorithm of increment of diversity combined with support vector machine is proposed to predict the protein subcellular location. The subcellular locations of plant and non-plant proteins are investigated by our method. The overall prediction accuracies in jackknife test are 88.3% for the eukaryotic plant proteins and 92.4% for the eukaryotic non-plant proteins, respectively. In order to estimate the effect of the sequence identity on predictive result, the proteins with sequence identity 相似文献   

18.
Newly synthesized proteins in eukaryotic cells can only function well after they are accurately transported to specific organelles. The establishment of protein databases and the development of programs have accelerated the study of protein subcellular locations, but their comparisons and evaluations of the prediction accuracy of subcellular location programs in plants are lacking. In this study, we built a random test set of maize proteins to evaluate the accuracy of six commonly used programs of subcellular locations: iLoc-Plant, Plant-mPLoc, CELLO, WoLF PSORT, SherLoc2, and Predotar. Our results showed that the accuracy of prediction varied greatly depending on the programs and subcellular locations involved. The programs using homology search methods (iLoc-Plant and Plant-mPLoc) performed better than those using feature search methods (CELLO, WoLF PSORT, SherLoc2, and Predotar). In particular, iLoc-Plant achieved an 84.9 % accuracy for proteins whose subcellular locations have been experimentally determined and a 74.3 % accuracy for all of the proteins in the test set. Regarding locations, the highest prediction accuracies for subcellular locations were obtained for the nucleus, followed by the cytoplasm, mitochondria, plastids, endoplasmic reticulum, and vacuoles, while the lowest were obtained for cell membrane, secreted, and multiple-location proteins. We discussed the accuracy of the six programs in this article. This study will assist plant biologists in choosing appropriate programs to predict the location of proteins and provide clues regarding their function, especially for hypothetical or novel proteins.  相似文献   

19.
Predicting protein localization in budding yeast   总被引:4,自引:0,他引:4  
MOTIVATION: Most of the existing methods in predicting protein subcellular location were used to deal with the cases limited within the scope from two to five localizations, and only a few of them can be effectively extended to cover the cases of 12-14 localizations. This is because the more the locations involved are, the poorer the success rate would be. Besides, some proteins may occur in several different subcellular locations, i.e. bear the feature of 'multiplex locations'. So far there is no method that can be used to effectively treat the difficult multiplex location problem. The present study was initiated in an attempt to address (1) how to efficiently identify the localization of a query protein among many possible subcellular locations, and (2) how to deal with the case of multiplex locations. RESULTS: By hybridizing gene ontology, functional domain and pseudo amino acid composition approaches, a new method has been developed that can be used to predict subcellular localization of proteins with multiplex location feature. A global analysis of the proteins in budding yeast classified into 22 locations was performed by jack-knife cross-validation with the new method. The overall success identification rate thus obtained is 70%. In contrast to this, the corresponding rates obtained by some other existing methods were only 13-14%, indicating that the new method is very powerful and promising. Furthermore, predictions were made for the four proteins whose localizations could not be determined by experiments, as well as for the 236 proteins whose localizations in budding yeast were ambiguous according to experimental observations. However, according to our predicted results, many of these 'ambiguous proteins' were found to have the same score and ranking for several different subcellular locations, implying that they may simultaneously exist, or move around, in these locations. This finding is intriguing because it reflects the dynamic feature of these proteins in a cell that may be associated with some special biological functions.  相似文献   

20.
Although numerous efforts have been made for predicting the subcellular locations of proteins based on their sequence information, it still remains as a challenging problem, particularly when query proteins may have the multiplex character, i.e., they simultaneously exist, or move between, two or more different subcellular location sites. Most of the existing methods were established on the assumption: a protein has one, and only one, subcellular location. Actually, recent evidence has indicated an increasing number of human proteins having multiple subcellular locations. This kind of multiplex proteins should not be ignored because they may bear some special biological functions worthy of our attention. Based on the accumulation-label scale, a new predictor, called iLoc-Hum, was developed for identifying the subcellular localization of human proteins with both single and multiple location sites. As a demonstration, the jackknife cross-validation was performed with iLoc-Hum on a benchmark dataset of human proteins that covers the following 14 location sites: centrosome, cytoplasm, cytoskeleton, endoplasmic reticulum, endosome, extracellular, Golgi apparatus, lysosome, microsome, mitochondrion, nucleus, peroxisome, plasma membrane, and synapse, where some proteins belong to two, three or four locations but none has 25% or higher pairwise sequence identity to any other in the same subset. For such a complicated and stringent system, the overall success rate achieved by iLoc-Hum was 76%, which is remarkably higher than that by any of the existing predictors that also have the capacity to deal with this kind of system. Further comparisons were also made via two independent datasets; all indicated that the success rates by iLoc-Hum were even more significantly higher than its counterparts. As a user-friendly web-server, iLoc-Hum is freely accessible to the public at or . For the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results by choosing either a straightforward submission or a batch submission, without the need to follow the complicated mathematical equations involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号