首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinoflagellate algae are important primary producers and of significant ecological and economic impact because of their ability to form "red tides". They are also models for evolutionary research because of an unparalleled ability to capture photosynthetic organelles (plastids) through endosymbiosis. The nature and extent of the plastid genome in the dominant perdinin-containing dinoflagellates remain, however, two of the most intriguing issues in plastid evolution. The plastid genome in these taxa is reduced to single-gene minicircles encoding an incomplete (until now 15) set of plastid proteins. The location of the remaining photosynthetic genes is unknown. We generated a data set of 6,480 unique expressed sequence tags (ESTs) from the toxic dinoflagellate Alexandrium tamarense (for details, see the Experimental Procedures in the Supplemental Data) to find the missing plastid genes and to understand the impact of endosymbiosis on genome evolution. Here we identify 48 of the non-minicircle-encoded photosynthetic genes in the nuclear genome of A. tamarense, accounting for the majority of the photosystem. Fifteen genes that are always found on the plastid genome of other algae and plants have been transferred to the nucleus in A. tamarense. The plastid-targeted genes have red and green algal origins. These results highlight the unique position of dinoflagellates as the champions of plastid gene transfer to the nucleus among photosynthetic eukaryotes.  相似文献   

2.
The in vivo binding pattern of the lectin Griffonia simplicifolia II (GSLII) was evaluated in sections of adult cat optic nerve following reports that it is a marker for oligodendrocytes in adult rodent CNS and that it may also be an oligodendroglial lineage marker. Following as closely as possible the immunocytochemical methodology employed in these reports, staining for GSLII was incorporated into sets of consecutive one micron thick sections comprising known cell-type specific reference markers backed up by electron microscopy. With this correlative protocol both lectin positive and lectin negative cells could be reliably identified. The material examined included normal control tissue and tissue containing previously studied demyelinating lesions of various ages in which oligodendrocyte progenitors and precursors have been characterized. GSLII was found to stain not only mature oligodendrocytes in adult cat optic nerve but also activated microglia, macrophages, polymorphonuclear leucocytes and other haematogenous cells. Lectin positivity was not found in oligodendroglial precursors, endothelial cells, astrocytes or ramified microglia. This study emphasises that care needs to be taken before assigning lineage marker status to individual lectins or antibodies.  相似文献   

3.
Genome size (C value, the haploid DNA content of the nucleus) varies widely among eukaryotes, increasing through duplication or insertion of transposable elements and decreasing through deletions. Here, we investigate relationships between genome size and life-history attributes potentially related to fitness, including body mass, brain mass, gestation time, age at sexual maturity, and longevity, in 42 species of primates. Using multivariate and phylogenetically informed analyses, we show that genome size is unrelated to any of these traits. Genome size exhibits little variation within primates and its evolution does not appear to be correlated with changes in life-history traits. This further indicates that the phenotypic consequences of variation in genome size are dependent on the particular biology of the group in question.  相似文献   

4.
Changes in chromatin structure, histone phosphorylation and cleavage of DNA into nucleosome-size fragments are characteristic features of apoptosis. Since H1 histones bind to the site of DNA cleavage between nucleosomal cores, the question arises as to whether the state of H1 phosphorylation influences the rate of internucleosomal cleavage. Here, we tested the relation between DNA fragmentation and H1 phosphorylation both in cultured cells and in vitro. In Jurkat cells, hyperosmotic mannitol concentration resulted in apoptosis, including nucleosomal fragmentation, whereas apoptosis induction by increased NaCl concentration was not accompanied by DNA fragmentation. However, both treatments induced dephosphorylation of H1 histones. In contrast, treatment of Raji cells with alkylphosphocholine led to induction of apoptosis with internucleosomal fragmentation, albeit without notable histone H1 dephosphorylation. These results demonstrate that dephosphorylation of H1 histones is neither a prerequisite for nor a consequence of internucleosomal cleavage. Moreover, we observed with an in vitro assay that the known enhancing effect of H1 histones on the activity of the apoptosis-induced endonuclease DFF40 is independent of the subtype or the phosphorylation state of the linker histone.  相似文献   

5.
6.
Wang  Chaojie  Gong  Yandong  Wei  Anbang  Huang  Tao  Hou  Siyuan  Du  Junjie  Li  Zongcheng  Wang  Junliang  Liu  Bing  Lan  Yu 《中国科学:生命科学英文版》2021,64(12):2073-2087
Science China Life Sciences - During embryogenesis, hematopoietic stem progenitor cells (HSPCs) are believed to be derived from hemogenic endothelial cells (HECs). Moreover, arterial feature is...  相似文献   

7.
The binucleate dinoflagellates Glenodinium (Peridinium) foliaceum Stein and Peridinium balticum (Levander) Lemmermann were found to contain two major buoyant density classes of DNA. The heavier peak (1.730 g/cm3) was derived from the "dinokaryotic" nucleus and the lighter peak (1.706 g/cm3) from the "endosymbiont" nucleus and this allowed for the fractionation of G. foliaceum DNA in CsCl/EtBr density gradients. An initial CsCl/Hoechst Dye gradient removed a minor A-T rich satellite species which was identified as plastid DNA with a size of about 100-106 kb. Analysis of the nuclear DNA by agarose gel electrophoresis and renaturation studies showed that the endosymbiont nucleus lacked amplified gene-sized DNA molecules, however, this nucleus did have a comparatively high level of DNA. The total amount of DNA per cell and the relative contributions of the two nuclei appeared to vary between two strains of G. foliaceum (75 pg/cell in CCAP strain and 58 pg in UTEX strain). The only strain of P. balticum examined contained 73 pg cell. These results are discussed in relation to the status and possible functioning of the endosymbiont nucleus and the idea that these dinoflagellates provide model systems with which to study the evolution of plastids.  相似文献   

8.
Cloning and sequencing of psbA, the gene encoding D1 protein of photosystem II, from six species of dinoflagellates harboring a peridinin type plastid [Prorocentrum micans Ehrenberg, Amphidinium carterae Hulburt, Heterocapsa triquetra Stein, Lingulodinium polyedra (Dodge) Stein, Alexandrium tamarense (Lebour) Balech and Alexandrium catenella (Whedon et Kofoid) Balech] is reported. Using the polymerase chain reaction technique, the psbA gene was detected in a satellite DNA band isolated from total DNA of A. catenella by CsCl-Hoechst 33258 gradient ultracentrifugation. This finding suggests that in dinoflagellates psbA is encoded in the plastid genome. The deduced amino acid sequences of D1 from the dinoflagellates did not reveal a typical ‘C-terminus extension’, which should be removed by proteolytic cleavage from the D1 precursor. Molecular phylogenetic analysis based on the deduced amino acid sequences of D1 revealed that the six species of dinoflagellates are monophyletic and also showed that dinoflagellates cluster with rhodophytes, a cryptophyte and heterokonts. These results support the hypothesis that the peridinin type plastid in dinoflagellates originated from an engulfed red alga.  相似文献   

9.
10.
Habitat fragmentation may not matter to species diversity   总被引:1,自引:0,他引:1  
Conservation biologists worry that fragmenting a bloc of natural habitat might reduce its species diversity. However, they also recognize the difficulty and importance of isolating the effect of fragmentation from that of simple loss of area. Using two different methods (species-area curve and Fisher's alpha index of diversity) to analyse the species diversities of plants, tenebrionid beetles and carabid beetles in a highly fragmented Mediterranean scrub landscape, we decoupled the effect of degree of fragmentation from that of area loss. In this system, fragmentation by itself seems not to have influenced the number of species. Our results, obtained at the scale of hectares, agree with similar results at island and continent scales.  相似文献   

11.
12.
The plastid of Plasmodium falciparum (or 'apicoplast') is the evolutionary homolog of the plant chloroplast and represents a vestige of a photosynthetic past. Apicoplast indispensability indicates that it still provides essential functions to parasites. Similar to plant chloroplasts, the apicoplast is dependent on many nucleus-encoded genes to provide these functions. The apicoplast is surrounded by four membranes, two more than plant chloroplasts. Thus, protein targeting to the apicoplast must overcome additional membrane barriers. In P.falciparum we have analyzed apicoplast targeting using green fluorescent protein (GFP). We demonstrate that protein targeting is at least a two-step process mediated by bipartite N-terminal pre-sequences that consist of a signal peptide for entry into the secretory pathway and a plant-like transit peptide for subsequent import into the apicoplast. The P.falciparum transit peptide is exceptional compared with other known plastid transit peptides in not requiring serine or threonine residues. The pre-sequence components are removed stepwise during apicoplast targeting. Targeting GFP to the apicoplast has also provided the first opportunity to examine apicoplast morphology in live P. falciparum.  相似文献   

13.
In eukaryotes, many genes were transferred to the nucleus from prokaryotic ancestors of the cytoplasmic organelles during endosymbiotic evolution. In plants, the transfer of genetic material from the plastid (chloroplast) and mitochondrion to the nucleus is a continuing process. The cellular location of a kanamycin resistance gene tailored for nuclear expression (35SneoSTLS2) was monitored in the progeny of reciprocal crosses of tobacco (Nicotiana tabacum) in which, at the start of the experiments, the reporter gene was confined either to the male or the female parental plastid genome. Among 146,000 progeny from crosses where the transplastomic parent was male, 13 transposition events were identified, whereas only one atypical transposition was identified in a screen of 273,000 transplastomic ovules. In a second experiment, a transplastomic beta-glucuronidase reporter gene, tailored to be expressed only in the nucleus, showed frequent stochastic expression that was confined to the cytoplasm in the somatic cells of several plant tissues. This gene was stably transferred in two out of 98,000 seedlings derived from a male transplastomic line crossed with a female wild type. These data demonstrate relocation of plastid DNA to the nucleus in both somatic and gametophytic tissue and reveal a large elevation of the frequency of transposition in the male germline. The results suggest a new explanation for the occurrence of uniparental inheritance in eukaryotes.  相似文献   

14.
15.
Resolving the excited state equilibrium of peridinin in solution   总被引:1,自引:0,他引:1  
The carotenoid peridinin is abundant in the biosphere, as it is the main pigment bound by the light-harvesting complexes of dinoflagellates, where it collects blue and green sunlight and transfers energy to chlorophyll a with high efficiency. Its molecular structure is particularly complex, giving rise to an intricate excited state manifold, which includes a state with charge-transfer character. To disentangle the excited states of peridinin and understand their function in vivo, we applied dispersed pump-probe and pump-dump-probe spectroscopy. The preferential depletion of population from the intramolecular charge transfer state by the dump pulse demonstrates that the S(1) and this charge transfer state are distinct entities. The ensuing dump-induced dynamics illustrates the equilibration of the two states which occurs on the time scale of a few picoseconds. Additionally, the dump pulse populates a short-lived ground state intermediate, which is suggestive of a complex relaxation pathway, probably including structural reorientation or solvation of the ground state. These findings indicate that the unique intramolecular charge transfer state of peridinin is an efficient energy donor to chlorophyll a in the peridinin-chlorophyll-protein complex and thus plays a significant role in global light harvesting.  相似文献   

16.
A single cyanobacterial primary endosymbiosis that occurred approximately 1.5 billion years ago is believed to have given rise to the plastid in the common ancestor of the Plantae or Archaeplastida--the eukaryotic supergroup comprising red, green (including land plants), and glaucophyte algae. Critical to plastid establishment was the transfer of endosymbiont genes to the host nucleus (i.e., endosymbiotic gene transfer [EGT]). It has been postulated that plastid-derived EGT played a significant role in plant nuclear-genome evolution, with 18% (or 4,500) of all nuclear genes in Arabidopsis thaliana having a cyanobacterial origin with about one-half of these recruited for nonplastid functions. Here, we determine whether the level of cyanobacterial gene recruitment proposed for Arabidopsis is of the same magnitude in the algal sisters of plants by analyzing expressed-sequence tag (EST) data from the glaucophyte alga Cyanophora paradoxa. Bioinformatic analysis of 3,576 Cyanophora nuclear genes shows that 10.8% of these with significant database hits are of cyanobacterial origin and one-ninth of these have nonplastid functions. Our data indicate that unlike plants, early-diverging algal groups appear to retain a smaller number of endosymbiont genes in their nucleus, with only a minor proportion of these recruited for nonplastid functions.  相似文献   

17.
This study shows a range extension for the Australian blacktip shark Carcharhinus tilstoni, which was believed to be restricted to Australia's tropical waters, of >1000 km into temperate waters, revealing its vulnerability to a wider commercial fishery.  相似文献   

18.
Land‐use changes and forest fragmentation have strong impact on biodiversity. However, little is known about the influence of new landscape configurations on arbuscular mycorrhizal fungal (AMF) community composition. We used 454 pyrosequencing to assess AMF diversity in plant roots from a fragmented forest. We detected 59 virtual taxa (VT; phylogenetically defined operational taxonomic units) of AMF – including 10 new VT – in the roots of Euphorbia acerensis. AMF communities were mainly composed of members of family Glomeraceae and were similar throughout the fragmented landscape, despite variation in forest fragment size (i.e. small, medium and large) and isolation (i.e. varying pairwise distances). AMF communities in forest fragments were phylogenetically clustered compared with the global, but not regional and local AMF taxon pools. This indicates that non‐random community assembly processes possibly related to dispersal limitation at a large scale, rather than habitat filtering or biotic interactions, may be important in structuring the AMF communities. In this system, forest fragmentation did not appear to influence AMF community composition in the roots of the ruderal plant. Whether this is true for AMF communities in soil and the roots of other ecological groups of host plants or in other habitats deserves further study.  相似文献   

19.
The subcellular location of activity and protein of ADP-glucose pyrophosphorylase (AGPase) in developing tomato (Lycopersicon esculentum) fruit was determined following a report that the enzyme might be present inside and outside the plastids in this organ. Plastids prepared from crude homogenates of columella and pericarp, the starch-accumulating tissues of developing fruit, contained 8% to 18% of the total activity of enzymes known to be confined to plastids, and 0.2% to 0.5% of the total activity of enzymes known to be confined to the cytosol. The proportion of the total activity of AGPase in the plastids was the same as that of the enzymes known to be confined to the plastid. When samples of plastid and total homogenate fractions were subjected to immunoblotting with an antiserum raised to AGPase, most or all of the protein detected was plastidial. Taken as a whole, these data provide strong evidence that AGPase is confined to the plastids in developing tomato fruit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号