首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dams with 7 pups each were randomly assigned to two different diets. Twelve dams were fed a normal (20%) protein diet and were divided into two groups of 4 and 8 animals. Pups from group 1 (n = 28) were injected with citrate buffer as a control. Pups from group 2 (n = 56) were injected with streptozotocin. Twelve additional dams were fed a 40% protein diet. They were also divided into two groups of 4 and 8 animals. Pups from group 3 (n = 28) were injected with citrate buffer as a control. Pups from group 4 (n = 56) were injected with streptozotocin. Forty-eight hours later, diabetic status was determined using Dextrostix. On Day 15, pups were injected with [14C]proline to determine collagen synthesis and 45Ca to study mineralization. After the pups were killed, blood glucose levels were determined. Then mandibles were removed. Milk from each dam was also collected after injection of oxytocin. At the time of killing, blood glucose levels in diabetic pups were less than earlier levels, though still higher than those of controls on either diet. The weights of body and mandible, collagen contents, and the total calcium contents in the diabetic group were in general less than those of the nondiabetic group on the 20 and 40% protein diets. 45Ca uptake in the diabetic group was significantly increased compared with those of the nondiabetic rats on both diets. The percentage reduction in the mandibles of diabetic rats from those of nondiabetic rats on the 40% protein diets was consistently less than that of animals on the 20% protein diets. The higher protein contents of the maternal milk in the 40% protein group may partly be responsible for the smaller impairment of mandibular development in the diabetic over nondiabetic animals. It is concluded that maternal low-carbohydrate high-protein diets will play indirectly a beneficial role in the development of the mandibles of diabetic newborns.  相似文献   

4.
Growth restriction, craniofacial dysmorphology, and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal or postnatal, but the underlying mechanisms remain unknown.We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome (e.g., craniofacial changes and growth restriction in adolescent mice). In this study, we characterize in detail the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and by extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of nonfostered, ethanol-exposed and control mice at postnatal day 28.We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This finding suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiologic result of ethanol exposure in utero. We also find that, despite some catch-up growth after 5 weeks of age, the effect extends into adulthood, which is consistent with longitudinal studies in humans.Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis, and lipid metabolism.  相似文献   

5.
The SMXA-5 strain, a new mouse model for type 2 diabetes, is a recombinant inbred strain derived from non-diabetic SM/J and A/J strains. As dietary fat is a key component in the development of diabetes, we compared the glucose tolerance and diabetes-related traits among the SMXA-5, SM/J, and A/J strains while feeding a high-fat diet for 10 weeks. SMXA-5 fed on a high-fat diet showed an increased serum insulin concentration. Judging from the hyperinsulinemia in SMXA-5, this strain showed insulin resistance, an inability of peripheral tissues to respond to insulin, which was strengthened by feeding with a high-fat diet. When fed on a high-fat diet for 5 weeks, the SMXA-5 mice showed severely impaired glucose tolerance. On the other hand, SM/J showed mildly impaired glucose tolerance, even when fed on a high-fat diet for 10 weeks. These results indicate that SMXA-5 would be available for use as a diabetic model susceptible to a high-fat diet.  相似文献   

6.

Aim

Placental growth hormone (PGH) is a major growth hormone in pregnancy and acts with Insulin Like Growth Factor I (IGF-I) and Insulin Like Growth Hormone Binding Protein 3 (IGFBP3). The aim of this study was to investigate PGH, IGF-I and IGFBP3 in non-diabetic (ND) compared to Type 1 Diabetic (T1DM) pregnancies.

Methods

This is a prospective study. Maternal samples were obtained from 25 ND and 25 T1DM mothers at 36 weeks gestation. Cord blood was obtained after delivery. PGH, IGF-I and IGFBP3 were measured using ELISA.

Results

There was no difference in delivery type, gender of infants or birth weight between groups. In T1DM, maternal PGH significantly correlated with ultrasound estimated fetal weight (r = 0.4, p = 0.02), birth weight (r = 0.51, p<0.05) and birth weight centile (r = 0.41, p = 0.03) PGH did not correlate with HbA1c.Maternal IGF-I was lower in T1DM (p = 0.03). Maternal and fetal serum IGFBP3 was higher in T1DM. Maternal third trimester T1DM serum had a significant band at 16 kD on western blot, which was not present in ND.

Conclusion

Maternal T1DM PGH correlated with both antenatal fetal weight and birth weight, suggesting a significant role for PGH in growth in diabetic pregnancy.IGFBP3 is significantly increased in maternal and fetal serum in T1DM pregnancies compared to ND controls, which was explained by increased proteolysis in maternal but not fetal serum. These results suggest that the normal PGH-IGF-I-IGFBP3 axis in pregnancy is abnormal in T1DM pregnancies, which are at higher risk of macrosomia.  相似文献   

7.
8.
9.
10.
Microarray analysis of uterine gene expression in mouse and human pregnancy   总被引:6,自引:0,他引:6  
Improved care of infants born prematurely has increased their survival. However, the incidence of preterm labor has not changed. To understand the processes involved in preterm labor, we used oligonucleotide microarrays to study gene expression in murine and human uterus during pregnancy. The induction of enzymes for prostaglandin synthesis was used as a marker for important changes during pregnancy because prostaglandins strongly contribute to both human and murine labor. We identified 504 genes that changed at least 2-fold between d 13.5 and 19.0 in the gravid mouse uterus. In the pregnant human myometrium, we found 478 genes that changed at least 2-fold in either term or preterm labor compared with preterm nonlabor specimens and 77 genes that significantly varied in both preterm and term labor. Patterns of gene regulation within functional groups comparing human preterm and term labor were similar, although the magnitude of change often varied. Surprisingly, few genes that changed significantly throughout pregnancy were the same in the mouse and human. These data suggest that functional progesterone withdrawal in human myometrium may not be the primary mechanism for labor induction, may implicate similar mechanisms for idiopathic preterm and term labor in humans, and may identify novel targets for further study.  相似文献   

11.
12.
13.
Humans and guinea pigs are species which are unable to synthesize ascorbic acid (vitamin C) because, unlike rodents, they lack the enzyme L-gulonolactone oxidase (Gulo). Although the phenotype of lacking vitamin C in humans, named scurvy, has long been well known, information on the impact of lacking Gulo on the gene expression profiles of different tissues is still missing. This knowledge could improve our understanding of molecular pathways in which Gulo may be involved. Recently, we discovered a deletion that includes all 12 exons in the gene for Gulo in the sfx mouse, characterized by spontaneous bone fractures. We report here the initial analysis of the impact of the Gulo gene deletion on the murine gene expression profiles in the liver, femur and kidney.  相似文献   

14.
15.
The metabolism of arachidonic acid (AA) and the transfer of its metabolites was determined in in vitro perfused placental tissue from normal pregnancies and those complicated by maternal insulin-dependent diabetes mellitus (IDDM). 14C-labelled AA was recirculated in the fetal circulation for 60 min while 3H-AA was recirculated in the maternal circulation. Placental effluent was subjected to high performance liquid chromatography (HPLC) and analysis of dual-label scintillation counts. Placentae from IDDM pregnancies converted 3-6 times more radiolabelled AA to eicosanoids than did normal placentae. In addition, the transfer of eicosanoids into the opposing circulation was doubled in placentae from IDDM pregnancies compared to normal placentae. The predominant direction of eicosanoid transfer in both groups of placentae was in the fetal-to-maternal direction. The relative amounts of eicosanoids produced was also altered in placentae from IDDM pregnancies. Increased amounts of thromboxane (Tx) B2 and hydroxyeicosatetraenoic acids (HETEs) were present in both circulations of placentae from IDDM pregnancies. Levels of 6-keto prostaglandin F1a (6KPGF1a) were significantly reduced in both circulations in placentae from IDDM pregnancies. Thus, the ratio of TxA2 to PGI2 and the ratio of HETEs to PGI2 were both significantly increased in placentae from IDDM pregnancies. These results suggest an imbalance in eicosanoid production which may be relevant to abnormal placental structure and function in IDDM pregnancies.  相似文献   

16.
17.
The diet of the mother during pregnancy influences the onset of different diseases and health-related traits in the offspring. We investigated the influence of the mother hen diet on the intestinal gene expression pattern in the offspring. Hens received for 11 weeks either a commercial feed or a commercial feed supplemented with vitamins and minerals. The offspring of the two groups showed no changes in growth rate or feed conversion. Of this offspring, gene expression patterns in the intestine were measured at 3 and 14 days of age with an intestinal cDNA-microarray. Between the two groups, 11 genes were found to be differentially expressed both at 3 and 14 days of age. Thus, these genes were differently regulated when the intestine is developing as well as when the intestine is more mature. Genes that are differentially expressed at day 3 and/or day 14 affect intestinal turnover, proliferation and development, metabolism and feed absorption. To confirm that differences in gene expression are related to intestinal development, we investigated intestinal proliferation. This indeed also showed differences in proliferation between the two groups at day 3 and day 14 of age. The gene expression and proliferation results indicate that feed of the hens influences the functionality of intestine of the offspring at day 3 and 14 of age.  相似文献   

18.
SSKOIDE 《Cell research》1997,7(1):51-59
INTRODUCTIONEpidermalgrowthfactor(EGF)wasinitiallyisolatedandpurifiedfromthesubmaxillarygland(SMG)ofmalemouse[1].Itisapolypeptidecomposedof53aminoacidresidues[2].Itinfluencescellproliferationanddifferentiationandmodulatesthegrowthanddevelopmentofmammalianorgans[3--7].AnoteworthyfindingisthatextirpationofmouseSMGresultsinamarkedreductionofserumEGFconcentrationassociatedwithanimpairedspermatogenesis[3].ThisfindingsuggeststhatEGFmayregulatespermproductionanddifferentiation.Inhumantest…  相似文献   

19.
With obesity rates reaching epidemic proportions, more studies concentrated on reducing the risk and treating this epidemic are vital. Redox stress is an important metabolic regulator involved in the pathophysiology of cardiovascular disease, Type 2 diabetes, and obesity. Oxygen and nitrogen-derived free radicals alter glucose and lipid homeostasis in key metabolic tissues, leading to increases in risk of developing metabolic syndrome. Oxidants derived from dietary fat differ in their metabolic regulation, with numerous studies showing benefits from a high omega 3 rich diet compared to the frequently consumed “western diet” rich in saturated fat. Omega 3 (OM3) fatty acids improve lipid profile, lower inflammation, and ameliorate insulin resistance, possibly through maintaining redox homeostasis. This study is based on the hypothesis that altering endogenous antioxidant production and/or increasing OM3 rich diet consumption will improve energy metabolism and maintain insulin sensitivity. We tested the comparative metabolic effects of a diet rich in saturated fat (HFD) and an omega 3-enriched diet (OM3) in the newly developed ‘stress-less’ mice model that overexpresses the endogenous antioxidant catalase. Eight weeks of dietary intervention showed that mice overexpressing endogenous catalase compared to their wild-type controls when fed an OM3 enriched diet, in contrast to HFD, activated GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, normal circadian rhythm, and insulin sensitivity. These findings suggest that redox regulation of GPR120/FFAR4 might be an important target in reducing risk of metabolic syndrome and associated diseases.  相似文献   

20.

Background

To study in a large-scale cohort with prospective data the associations between psychosocial stress during pregnancy and placenta weight at birth. Animal data suggest that the placenta is involved in stress-related fetal programming.

Methodology/Principal Findings

We defined a priori two types of psychosocial stress during pregnancy, life stress (perceived burdens in major areas of life) and emotional symptoms (e.g. anxiety). We estimated the associations of maternal stress during pregnancy with placenta weight at birth, controlled for length of gestation, by predicting gestational age- and sex-specific z-scores of placenta weight through multiple regression analysis, adjusted for potential confounders (N = 78017 singleton pregnancies). Life stress (per increase in stress score by 1, range: 0–18) during pregnancy was associated with increased placenta weight at birth (z-score, reported in 10−3; B, 14.33; CI, 10.12–18.54). In contrast, emotional symptoms during pregnancy were not associated with placenta weight at birth.

Conclusions/Significance

Maternal life stress but not emotional symptoms during pregnancy was associated with increased placenta weight at birth; yet, the association-estimate was rather small. Our results may contribute to a better understanding of the role of the placenta in the regulation of intrauterine processes in response to maternal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号