首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms underlying the pathophysiology of heat stress in the small intestine remain undefined. Furthermore, little information is available concerning changes in microRNA (miRNA) expression following heat stress. The present study sought to evaluate miRNA and mRNA expression profiles in the rat small intestine in response to heat stress. Male Sprague-Dawley rats were subjected to 2?h of heat stress daily for ten consecutive days. Rats were sacrificed at specific time points immediately following heat treatment, and morphological changes in the small intestine were determined. The miRNA and mRNA expression profiles from sample of small intestine were evaluated by microarray analysis. Heat stress caused pronounced morphological damage in the rat small intestine, most severe within the jejunum after 3?days of heat treatment. A mRNA microarray analysis found 270 genes to be up-regulated and 122 genes down-regulated (P?≤?0.01, ≥2.0-fold change) in the jejunum after heat treatment. A miRNA microarray analysis found 18 miRNAs to be up-regulated and 11 down-regulated in the jejunum after heat treatment (P?≤?0.05). Subsequent bioinformatic analyses of the differentially expressed mRNAs and miRNAs were carried out to integrate miRNA and mRNA expression and revealed that alterations in mRNA following heat stress were negatively correlated with miRNA expression. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of heat stress-induced injury in the small intestine, specifically with regard to miRNAs.  相似文献   

2.
Understanding miRNAs' regulatory networks and target genes could facilitate the development of therapies for human diseases such as cancer. Although much useful gene expression profiling data for tumor cell lines is available, microarray data for miRNAs and mRNAs in the human HepG2 cell line have only been compared with that of other cell lines separately. The relationship between miRNAs and mRNAs in integrated expression profiles for HepG2 cells is still unknown. To explore the miRNA–mRNA correlations in hepatocellular carcinoma (HCC) cells, we performed miRNA and mRNA expression profiling in HepG2 cells and normal liver HL-7702 cells at the genome scale using next-generation sequencing technology. We identified 193 miRNAs that are differentially expressed in these two cell lines. Of these, 89 miRNAs were down-regulated in HepG2 cells compared with HL-7702 cells, while 104 miRNAs were up-regulated. We also observed 3035 mRNAs that are significantly dys-regulated in HepG2 cells. We then performed an integrated analysis of the expression data for differentially expressed miRNAs and mRNAs and found several miRNA–mRNA pairs that are significantly correlated in HepG2 cells. Further analysis suggested that these differentially expressed genes were enriched in four tumorigenesis-related signaling pathways, namely, ErbB, JAK–STAT, mTOR, and WNT, which until now had not been fully reported. Our results could be helpful in understanding the mechanisms of HCC occurrence and development.  相似文献   

3.
4.
Hirschsprung’s disease (HSCR), the most common congenital malformation of the gut, is regulated by multiple signal transduction pathways. Several components of these pathways are important targets for microRNAs (miRNAs). Multiple miRNAs have been associated with the pathophysiology of HSCR, and serum miRNAs profiles of HSCR patients have been reported, but miRNA expression in HSCR colon tissue is almost completely unexplored. Using microarray technology, we screened colon tissue to detect miRNAs whose expression profiles were altered in HSCR and identify targets of differentially expressed miRNAs. Following filtering of low-intensity signals, data normalization, and volcano plot filtering, we identified 168 differentially expressed miRNAs (104 up-regulated and 64 down-regulated). Fifty of these mRNAs represent major targets of dysegulated miRNAs and may thus important roles in the pathophysiology of HSCR. Pathway analysis revealed that 7 of the miRNA targets encode proteins involved in regulation of cell proliferation and migration via RET and related signaling pathways (MAPK and PI3K/AKT). Our results identify miRNAs that play key roles in the pathophysiology of the complex multi-factorial disease HSCR.  相似文献   

5.
6.
利用GEO数据库中的芯片数据,筛选与星形细胞瘤生存预后相关的miRNA-mRNA调控关系对,为后续研究提供理论支持.下载芯片数据利用R语言进行差异表达分析,得到星形细胞瘤较正常组织表达显著改变的miRNA与mRNA;通过miRNA靶基因预测,将靶基因与差异表达mRNA取交集,明确mRNA与miRNA之间的关系;利用GE...  相似文献   

7.
8.
Growth hormone (GH) is a key regulatory factor in animal growth, development and metabolism. Based on the expression level of the GH receptor, the chicken liver is a major target organ of GH, but the biological effects of GH on the chicken liver are not fully understood. In this work we identified mRNAs and miRNAs that are regulated by GH in primary hepatocytes from female chickens through RNA-seq, and analyzed the functional relevance of these mRNAs and miRNAs through GO enrichment analysis and miRNA target prediction. A total of 164 mRNAs were found to be differentially expressed between GH-treated and control chicken hepatocytes, of which 112 were up-regulated and 52 were down-regulated by GH. A total of 225 chicken miRNAs were identified by the RNA-Seq analysis. Among these miRNAs 16 were up-regulated and 1 miRNA was down-regulated by GH. The GH-regulated mRNAs were mainly involved in growth and metabolism. Most of the GH-upregulated or GH-downregulated miRNAs were predicted to target the GH-downregulated or GH-upregulated mRNAs, respectively, involved in lipid metabolism. This study reveals that GH regulates the expression of many mRNAs involved in metabolism in female chicken hepatocytes, which suggests that GH plays an important role in regulating liver metabolism in female chickens. The results of this study also support the hypothesis that GH regulates lipid metabolism in chicken liver in part by regulating the expression of miRNAs that target the mRNAs involved in lipid metabolism.  相似文献   

9.
10.
11.
12.
13.
Insect gut microbiota has been reported to participate in regulating host multiple biological processes including metabolism and reproduction. However, the corresponding molecular mechanisms remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in complex interactions between the gut microbiota and the host. Here, we used next-generation sequencing technology to characterize miRNA and mRNA expression profiles and construct the miRNA–gene regulatory network in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. A total of 3016 differentially expressed genes (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Based on the integrated analysis of miRNA and mRNA sequencing data, 229 negatively correlated miRNA–gene pairs were identified from the miRNA–mRNA network. Gene ontology enrichment analysis indicated that DEMs could target several genes involved in the metabolic process, oxidation–reduction process, oogenesis, and insulin signaling pathway. Finally, real-time quantitative polymerase chain reaction further verified the accuracy of RNA sequencing results. In conclusion, our study provides the profiles of miRNA and mRNA expressions under antibiotics treatment and provides an insight into the roles of miRNAs and their target genes in the interaction between the gut microbiota and its host.  相似文献   

14.
15.
To determine whether miRNAs, particularly miR-21-5p, are associated with primary dysmenorrhea (PD) and to elucidate the in-depth molecular mechanisms underlying PD regulation, estradiol benzoate and oxytocin were used to induce PD syndrome in rats followed by miRNA microarray and mRNA profiling of the rat uteruses. Additionally, the expression level of miR-21-5p in the uterus was measured by a real time RT-PCR approach. The differentially expressed mRNAs in the uterus of PD syndrome rats were then bioinformatically analyzed by ClueGo to be enriched in specific biological pathways. The targets of miRNAs in the pathways were predicted by TargetScan. Consequently, the expression levels of 13 miRNAs are significantly changed in the uterus of PD syndrome rats, of which 7 are up-regulated (including miR-21-5p) and 6 are down-regulated. Further, 682 mRNAs were found to be differentially expressed, with 267 and 415 are up- and down-regulated, respectively. These genes are significantly enriched in a series of biological pathways closely relevant to miR-21-5p function and uterine smooth muscle (USM) contraction. Our data, for the first time, disclose that miR-21-5p, as well as some other miRNAs, is associated with PD regulation through the involvement of USM contractability.  相似文献   

16.
张冰  李娜  阚云超 《昆虫学报》2021,64(11):1235-1243
【目的】本研究旨在通过对家蚕Bombyx mori 5龄幼虫精巢和卵巢组织微小RNA (microRNA, miRNA)基因芯片及转录组进行分析,找到参与家蚕性腺发育相关的miRNA分子及可能的靶基因。【方法】采用新一代高通量测序平台对家蚕5龄幼虫精巢和卵巢(分别定义为Test和Control)进行miRNA基因芯片检测及转录组测序分析,根据P<0.05且log2(fold change, FC)≥2的标准,通过比较筛选出Test vs Control的差异表达miRNA;根据q≤0.05且|log2(fold change)|≥1的标准,通过比较筛选出Test vs Control的差异表达基因 (differentially expressed genes, DEGs);随机选取8个上调和12个下调差异表达miRNA,对其表达及其预测的5个靶基因进行qRT-PCR验证;对DEGs以及差异表达miRNA的靶基因进行KEGG通路富集分析。【结果】从精巢和卵巢样本中(Test vs Control)分别鉴定出68个差异表达miRNA和3 991个DEGs,其中上调和下调miRNA分别为36和32个,上调和下调DEGs分别为2 033和1 958个。差异表达miRNA的qRT PCR验证结果均与芯片数据一致。KEGG通路富集分析结果显示DEGs在新陈代谢及核糖体的信号通路显著富集。对差异表达miRNA在DEGs中的可能靶基因进行预测,结果找到了4组表达趋势相反的miRNA与靶基因:分别是bmo-miR-2774a与LOC101745556;bmo-miR-92b与LOC101735954以及bmo-miR-3266与LOC733130和LOC778467;1组表达趋势一致的miRNA与靶基因:bmo-miR-3321与LOC101744895。5个靶基因的qRT-PCR验证结果与转录组测序结果一致。【结论】本研究获得了家蚕5龄幼虫精巢和卵巢转录组及miRNA芯片数据,筛选并验证了4组差异表达和1组一致表达miRNA及潜在靶基因,为探究家蚕精巢和卵巢发育差异奠定了基础。  相似文献   

17.
Little is known about the functions of miRNAs in human longevity. Here, we present the first genome-wide miRNA study in long-lived individuals (LLI) who are considered a model for healthy aging. Using a microarray with 863 miRNAs, we compared the expression profiles obtained from blood samples of 15 centenarians and nonagenarians (mean age 96.4 years) with those of 55 younger individuals (mean age 45.9 years). Eighty miRNAs showed aging-associated expression changes, with 16 miRNAs being up-regulated and 64 down-regulated in the LLI relative to the younger probands. Seven of the eight selected aging-related biomarkers were technically validated using quantitative RT-PCR, confirming the microarray data. Three of the eight miRNAs were further investigated in independent samples of 15 LLI and 17 younger participants (mean age 101.5 and 36.9 years, respectively). Our screening confirmed previously published miRNAs of human aging, thus reflecting the utility of the applied approach. The hierarchical clustering analysis of the miRNA microarray expression data revealed a distinct separation between the LLI and the younger controls (P-value < 10(-5) ). The down-regulated miRNAs appeared as a cluster and were more often reported in the context of diseases than the up-regulated miRNAs. Moreover, many of the differentially regulated miRNAs are known to exhibit contrasting expression patterns in major age-related diseases. Further in silico analyses showed enrichment of potential targets of the down-regulated miRNAs in p53 and other cancer pathways. Altogether, synchronized miRNA-p53 activities could be involved in the prevention of tumorigenesis and the maintenance of genomic integrity during aging.  相似文献   

18.

Background

MicroRNAs (miRNAs) are short non-coding RNA molecules which are proved to be involved in mammalian spermatogenesis. Their expression and function in the porcine germ cells are not fully understood.

Methodology

We employed a miRNA microarray containing 1260 unique miRNA probes to evaluate the miRNA expression patterns between sexually immature (60-day) and mature (180-day) pig testes. One hundred and twenty nine miRNAs representing 164 reporter miRNAs were expressed differently (p<0.1). Fifty one miRNAs were significantly up-regulated and 78 miRNAs were down-regulated in mature testes. Nine of these differentially expressed miRNAs were validated using quantitative RT-PCR assay. Totally 15919 putative miRNA-target sites were detected by using RNA22 method to align 445 NCBI pig cDNA sequences with these 129 differentially expressed miRNAs, and seven putative target genes involved in spermatogenesis including DAZL, RNF4 gene were simply confirmed by quantitative RT-PCR.

Conclusions

Overall, the results of this study indicated specific miRNAs expression in porcine testes and suggested that miRNAs had a role in regulating spermatogenesis.  相似文献   

19.
20.
MicroRNAs (miRNAs) are a class of highly conserved small non-coding RNA molecules that play a pivotal role in several cellular functions. In this study, miRNA and messenger RNA (mRNA) profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from parthenogenetic, androgenetic, and fertilized blastocysts. The global analysis of miRNA-mRNA target pairs provided insight into the role of miRNAs in gene expression. Results showed that a total of 125 miRNAs and 2394 mRNAs were differentially expressed between androgenetic ESCs (aESCs) and fertilized ESCs (fESCs), a total of 42 miRNAs and 87 mRNAs were differentially expressed between parthenogenetic ESCs (pESCs) and fESCs, and a total of 99 miRNAs and 1788 mRNAs were differentially expressed between aESCs and pESCs. In addition, a total of 575, 5 and 376 miRNA-mRNA target pairs were observed in aESCs vs. fESCs, pESCs vs. fESCs, and aESCs vs. pESCs, respectively. Furthermore, 15 known imprinted genes and 16 putative uniparentally expressed miRNAs with high expression levels were confirmed by both microarray and real-time RT-PCR. Finally, transfection of miRNA inhibitors was performed to validate the regulatory relationship between putative maternally expressed miRNAs and target mRNAs. Inhibition of miR-880 increased the expression of Peg3, Dyrk1b, and Prrg2 mRNA, inhibition of miR-363 increased the expression of Nfat5 and Soat1 mRNA, and inhibition of miR-883b-5p increased Nfat5, Tacstd2, and Ppapdc1 mRNA. These results warrant a functional study to fully understand the underlying regulation of genomic imprinting in early embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号