首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection. Moreover, the phage-like attachment site, attL, encoded within ssrA, serves as the site of integration of a region of Salmonella-specific sequence; adjacent to the 5' end of ssrA is another region of Salmonella-specific sequence with extensive homology to predicted proteins encoded within the unlinked Salmonella pathogenicity island SPI4. S. enterica serovar Typhimurium ssrA mutants fail to support the growth of phage P22 and are delayed in their ability to form viable phage particles following induction of a phage P22 lysogen. These data indicate that ssrA plays a role in the pathogenesis of Salmonella, serves as an attachment site for Salmonella-specific sequences, and is required for the growth of phage P22.  相似文献   

3.
The ability of an isogenic set of mutants of Salmonella enterica serovar Typhimurium L354 (SL1344) with defined deletions in genes encoding components of tripartite efflux pumps, including acrB, acrD, acrF and tolC, to colonize chickens was determined in competition with L354. In addition, the ability of L354 and each mutant to adhere to, and invade, human embryonic intestine cells and mouse monocyte macrophages was determined in vitro. The tolC and acrB knockout mutants were hyper-susceptible to a range of antibiotics, dyes and detergents; the tolC mutant was also more susceptible to acid pH and bile and grew more slowly than L354. Complementation of either gene ablated the phenotype. The tolC mutant poorly adhered to both cell types in vitro and was unable to invade macrophages. The acrB mutant adhered, but did not invade macrophages. In vivo, both the acrB mutant and the tolC mutant colonized poorly and did not persist in the avian gut, whereas the acrD and acrF mutant colonized and persisted as well as L354. These data indicate that the AcrAB-TolC system is important for the colonization of chickens by S. Typhimurium and that this system has a role in mediating adherence and uptake into target host cells.  相似文献   

4.
5.
The std operon encodes a fimbrial adhesin of Salmonella enterica serotype Typhimurium that is required for attachment to intestinal epithelial cells and for cecal colonization in the mouse. To study the mechanism by which this virulence factor contributes to colonization we characterized its binding specificity. Std-mediated binding to human colonic epithelial (Caco-2) cells could be abrogated by removing N-linked glycans. Adherence of Std fimbriated S.  Typhimurium to Caco-2 cells could be blocked by co-incubation with H type 2 oligosaccharide (Fucα1-2Galβ1-4GlcNAc) or by pretreatment of cells with α1-2 fucosidase. In contrast, pretreatment of Caco-2 cells with neuraminidase or co-incubation with the type 2 disaccharide precursor (Galβ1-4GlcNAc) did not reduce adherence of Std fimbriated S.  Typhimurium. Binding of purified Std fimbriae to Fucα1-2Galβ1-4GlcNAc in a solid phase binding assay was competitively inhibited by Ulex europaeus agglutinin-I (UEA-I), a lectin specific for Fucα1-2 moieties. Purified Std fimbriae and UEA both bound to a receptor localized in the mucus layer of the murine cecum. These data suggest that the std operon encodes an adhesin that binds an α1-2 fucosylated receptor(s) present in the cecal mucosa.  相似文献   

6.
Anaerobic fungi are an important component of the cellulolytic ruminal microflora. Ammonia alone as N source supports growth, but amino acid mixtures are stimulatory. In order to evaluate the extent of de novo synthesis of individual amino acids in Piromyces communis and Neocallimastix frontalis, isotope enrichment in amino acids was determined during growth on (15)NH(4)Cl in different media. Most cell N (0.78 and 0.63 for P. communis and N. frontalis, respectively) and amino acid N (0.73 and 0.59) continued to be formed de novo from ammonia when 1 g l(-1) trypticase was added to the medium; this concentration approximates the peak concentration of peptides in the rumen after feeding. Higher peptide/amino acid concentrations decreased de novo synthesis. Lysine was exceptional, in that its synthesis decreased much more than other amino acids when Trypticase or amino acids were added to the medium, suggesting that lysine synthesis might limit fungal growth in the rumen.  相似文献   

7.

Background

Type 1 fimbriae are the most commonly found fimbrial appendages on the outer membrane of Salmonella enterica serotype Typhimurium. Previous investigations indicate that static broth culture favours S. Typhimurium to produce type 1 fimbriae, while non-fimbriate bacteria are obtained by growth on solid agar media. The phenotypic expression of type 1 fimbriae in S. Typhimurium is the result of the interaction and cooperation of several genes in the fim gene cluster. Other gene products that may also participate in the regulation of type 1 fimbrial expression remain uncharacterized.

Results

In the present study, transposon insertion mutagenesis was performed on S. Typhimurium to generate a library to screen for those mutants that would exhibit different type 1 fimbrial phenotypes than the parental strain. Eight-two mutants were obtained from 7,239 clones screened using the yeast agglutination test. Forty-four mutants produced type 1 fimbriae on both solid agar and static broth media, while none of the other 38 mutants formed type 1 fimbriae in either culture condition. The flanking sequences of the transposons from 54 mutants were cloned and sequenced. These mutants can be classified according to the functions or putative functions of the open reading frames disrupted by the transposon. Our current results indicate that the genetic determinants such as those involved in the fimbrial biogenesis and regulation, global regulators, transporter proteins, prophage-derived proteins, and enzymes of different functions, to name a few, may play a role in the regulation of type 1 fimbrial expression in response to solid agar and static broth culture conditions. A complementation test revealed that transforming a recombinant plasmid possessing the coding sequence of a NAD(P)H-flavin reductase gene ubiB restored an ubiB mutant to exhibit the type 1 fimbrial phenotype as its parental strain.

Conclusion

Genetic determinants other than the fim genes may involve in the regulation of type 1 fimbrial expression in S. Typhimurium. How each gene product may influence type 1 fimbrial expression is an interesting research topic which warrants further investigation.  相似文献   

8.
9.
Salmonella enterica serotype Typhimurium invades eukaryotic cells by re-arranging the host-cell cytoskeleton. However, the precise mechanisms by which Salmonella induces cytoskeletal changes remain undefined. IQGAP1 (IQ motif-containing GTPase-activating protein 1) is a scaffold protein that binds multiple proteins including actin, the Rho GTPases Rac1 and Cdc42 (cell division cycle 42), and components of the MAPK (mitogen-activated protein kinase) pathway. We have shown previously that optimal invasion of Salmonella into HeLa cells requires IQGAP1. In the present paper, we use IQGAP1-null MEFs (mouse embryonic fibroblasts) and selected well-characterized IQGAP1 mutant constructs to dissect the molecular determinants of Salmonella invasion. Knockout of IQGAP1 expression reduced Salmonella invasion into MEFs by 75%. Reconstituting IQGAP1-null MEFs with wild-type IQGAP1 completely rescued invasion. By contrast, reconstituting IQGAP1-null cells with mutant IQGAP1 constructs that specifically lack binding to either Cdc42 and Rac1 (termed IQGAP1ΔMK24), actin, MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase] or ERK only partially restored Salmonella entry. Cell-permeant inhibitors of Rac1 activation or MAPK signalling reduced Salmonella invasion into control cells by 50%, but had no effect on bacterial entry into IQGAP1-null MEFs. Importantly, the ability of IQGAP1ΔMK24 to promote Salmonella invasion into IQGAP1-null cells was abrogated by chemical inhibition of MAPK signalling. Collectively, these results imply that the scaffolding function of IQGAP1, which integrates Rac1 and MAPK signalling, is usurped by Salmonella to invade fibroblasts and suggest that IQGAP1 may be a potential therapeutic target for Salmonella pathogenesis.  相似文献   

10.
Bacterial flagellins are potent inducers of innate immunity. Three signaling pathways have been implicated in the sensing of flagellins; these involve toll-like receptor 5 (TLR5) and the cytosolic proteins Birc1e/Naip5 and Ipaf. Although the structural basis of TLR5-flagellin interaction is known, little is known about how flagellin enters the host cell cytosol to induce signaling via Birc1e/Naip5 and Ipaf. Here we demonstrate for the first time the translocation of bacterial flagellin into the cytosol of host macrophages by the vacuolar pathogen, Salmonella enterica serotype Typhimurium. Translocation of flagellin into the host cell cytosol was directly demonstrated using beta-lactamase reporter constructs. Flagellin translocation required the Salmonella Pathogenicity Island 1 Type III secretion system (SPI-1 T3SS) but not the flagellar T3SS.  相似文献   

11.
12.
13.
14.
AIMS: To determine the effect of antimicrobial selective pressure on the transmission of antimicrobial resistant and sensitive strains of Salmonella in poultry. METHODS AND RESULTS: Eight pens housed 12 broiler chicks each. Two chicks in four of the pens were inoculated with a Salm. Typhimurium strain resistant to 12 antimicrobials (including tetracycline), and two chicks in each of the four other pens were inoculated with a strain sensitive to all antimicrobials tested. Two pens inoculated with each strain were treated with chlortetracycline and two were not. Chicks were killed on day 7 and caeca were cultured for Salmonella. Experiments were performed independently twice. Chicks exposed to pen mates inoculated with the resistant strain and treated with tetracycline were 90% positive for Salmonella; whereas 60% of chicks given no antimicrobials were positive. Chicks exposed to the sensitive strain were 95% positive with tetracycline treatment and 90% positive without treatment. CONCLUSIONS: A multidrug-resistant Salm. Typhimurium strain had significantly increased transmission when chicks were treated with tetracycline. Transmission of a sensitive strain was not inhibited by antimicrobial selective pressure at recommended therapeutic dose. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates that antimicrobial usage may influence the transmission of antimicrobial-resistant pathogens in poultry.  相似文献   

15.
16.
17.
One of the most common modes of secretion of toxins in gram-negative bacteria is via the type three secretion system (TTSS), which enables the toxins to be specifically exported into the host cell. The hilA gene product is a key regulator of the expression of the TTSS located on the pathogenicity island (SPI-1) of Salmonella enterica serovar Typhimurium. It has been proposed earlier that the regulation of HilA expression is via a complex feedforward loop involving the transactivators HilD, HilC and RtsA. In this paper, we have constructed a mathematical model of regulation of hilA-promoter by all the three activators using two feedforward loops. We have modified the model to include additional complexities in regulation such as the proposed positive feedback and cross regulations of the three transactivators. Results of the various models indicate that the basic model involving two Type I coherent feedforward loops with an OR gate is sufficient to explain the published experimental observations. We also discuss two scenarios where the regulation can occur via monomers or heterodimers of the transactivators and propose experiments that can be performed to distinguish the two modes of regulator function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
AIMS: To investigate lipopolysaccharide (LPS) expression in Salmonella enterica serotype Typhimurium definitive phage type 104 (Salmonella Typhimurium DT104) and related phage types. METHODS AND RESULTS: Isolates were examined for the expression of LPS by SDS-PAGE and silver staining and subtyped by Pulsed Field Gel Electrophoresis (PFGE). The 100 isolates expressed one of two LPS profiles designated A (72%) and B (28%). LPS profiling was able to discriminate between isolates of identical PFGE type. Among 10 groups of outbreak isolates examined, each group was of a single LPS profile: A, 8/10 and B, 2/10. All 10 outbreaks were identical by PFGE analysis. CONCLUSIONS: Isolates of Salmonella Typhimurium DT104 and related phage types expressed one of two distinct LPS profiles. The two LPS profiles appear similar but shifted and in phase with one another, suggesting that the heterogeneity is due to changes in the LPS core region rather than among the repeating oligosaccharide units of the long-chain LPS. SIGNIFICANCE AND IMPACT OF THE SUTDY: LPS profiling provides a useful adjunct to PFGE and other molecular methods for the subtyping of this group of bacteria in epidemiological investigations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号