首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.

Background

Type 1 fimbriae are the most commonly found fimbrial appendages on the outer membrane of Salmonella enterica serotype Typhimurium. Previous investigations indicate that static broth culture favours S. Typhimurium to produce type 1 fimbriae, while non-fimbriate bacteria are obtained by growth on solid agar media. The phenotypic expression of type 1 fimbriae in S. Typhimurium is the result of the interaction and cooperation of several genes in the fim gene cluster. Other gene products that may also participate in the regulation of type 1 fimbrial expression remain uncharacterized.

Results

In the present study, transposon insertion mutagenesis was performed on S. Typhimurium to generate a library to screen for those mutants that would exhibit different type 1 fimbrial phenotypes than the parental strain. Eight-two mutants were obtained from 7,239 clones screened using the yeast agglutination test. Forty-four mutants produced type 1 fimbriae on both solid agar and static broth media, while none of the other 38 mutants formed type 1 fimbriae in either culture condition. The flanking sequences of the transposons from 54 mutants were cloned and sequenced. These mutants can be classified according to the functions or putative functions of the open reading frames disrupted by the transposon. Our current results indicate that the genetic determinants such as those involved in the fimbrial biogenesis and regulation, global regulators, transporter proteins, prophage-derived proteins, and enzymes of different functions, to name a few, may play a role in the regulation of type 1 fimbrial expression in response to solid agar and static broth culture conditions. A complementation test revealed that transforming a recombinant plasmid possessing the coding sequence of a NAD(P)H-flavin reductase gene ubiB restored an ubiB mutant to exhibit the type 1 fimbrial phenotype as its parental strain.

Conclusion

Genetic determinants other than the fim genes may involve in the regulation of type 1 fimbrial expression in S. Typhimurium. How each gene product may influence type 1 fimbrial expression is an interesting research topic which warrants further investigation.  相似文献   

9.
10.
Dichelobacter nodosus is the essential causative agent of footrot in sheep. The major D. nodosus-encoded virulence factors that have been implicated in the disease are type IV fimbriae and extracellular proteases. To examine the role of the fimbriae in virulence, allelic exchange was used to insertionally inactivate the fimA gene, which encodes the fimbrial subunit protein, from the virulent type G D. nodosus strain VCS1703A. Detailed analysis of two independently derived fimA mutants revealed that they no longer produced the fimbrial subunit protein or intact fimbriae and did not exhibit twitching motility. In addition, these mutants were no longer capable of undergoing natural transformation and did not secrete wild-type levels of extracellular proteases. These effects were not due to polar effects on the downstream fimB gene because insertionally inactivated fimB mutants were not defective in any of these phenotypic tests. Virulence testing of the mutants in a sheep pen trial conducted under controlled environmental conditions showed that the fimA mutants were avirulent, providing evidence that the fimA gene is an essential D. nodosus virulence gene. These studies represent the first time that molecular genetics has been used to determine the role of virulence genes in this slow growing anaerobic bacterium.  相似文献   

11.
The fimbriae of 50 strains of serotype Gallinarum and 35 strains of serotype Pullorum of the genus Salmonella were compared with the type-1 fimbriae of serotype Typhimurium strains by immune electron microscopy and dot blot hybridization tests with gene probes for type-1 fimbriation in Typhimurium. The fimbriae of Gallinarum and Pullorum strains were coated with Typhimurium type-1 fimbrial anti-serum and probes hybridized strongly with DNA of Gallinarum and Pullorum strains under stringent conditions. Furthermore, when Typhimurium type-1 fimbrial antiserum, that had been absorbed with fimbriate Gallinarum or Pullorum bacteria, was used in immune gold labelling experiments, it was shown that residual antibody recognized sites of possible adhesin incorporation at intervals along the length of Typhimurium type-1 fimbriae. These findings suggest that the type-2 fimbriae produced by all Gallinarum and Pullorum strains are non-adhesive forms of adhesive, type-1 fimbriae. This observation is of interest because type-1 fimbriae have never been reported in naturally occurring strains of these two avian-adapted serotypes.  相似文献   

12.
Regulation of the gene, fimA, encoding the major fimbrial subunit of S. typhimurium S6704 was examined by using a lambda fimA-lacZ lysogen. Transformation of the lambda fimA-lacZ lysogen with various derivatives of the recombinant plasmid that encodes type 1 fimbrial expression, pISF101, indicated that two regions of this plasmid alter beta-galactosidase production. One plasmid is a deletion resulting in the loss of a 28-kDa polypeptide downstream of fimA, while the other plasmid encodes a 24- and a 27-kDa polypeptide. Northern (RNA) blot analyses indicated that the steady-state fimA mRNA levels of these transformants were high. In addition, phenotypic expression of type 1 fimbriae by agar-grown cultures is observed only in those transformants bearing plasmids which show increased beta-galactosidase and fimA mRNA levels.  相似文献   

13.
P Klemm 《The EMBO journal》1986,5(6):1389-1393
The expression of type 1 fimbriae in Escherichia coli is phase dependent, i.e. a cell is either completely fimbriated or bald. This phenomenon is due to the periodic inversion of a specific 300-bp DNA segment containing the promoter for the fimbrial subunit gene, fimA. The phase switch is controlled by the products of two regulatory genes, fimB and fimE, located upstream of fimA. The fimB and fimE proteins direct the phase switch into the 'on' and 'off' position, respectively. The DNA sequence of a 3000-bp region containing the two genes has been determined. The fimB and fimE proteins exhibit strong homology and have most likely originated by duplication of an ancestral gene. They are highly basic implying that they control the phase switch through interaction at the DNA level.  相似文献   

14.
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.  相似文献   

15.
I van Die  B van Geffen  W Hoekstra  H Bergmans 《Gene》1985,34(2-3):187-196
The genes responsible for expression of type 1C fimbriae have been cloned from the uropathogenic Escherichia coli strain AD110 in the plasmid vector pACYC184. Analysis of deletion mutants from these plasmids showed that a 7-kb DNA fragment was required for biosynthesis of 1C fimbriae. Further analysis of this DNA fragment showed that four genes are present encoding proteins of 16, 18.5, 21 and 89 kDal. A DNA fragment encoding the 16-kDal fimbrial subunit has been cloned. The nucleotide sequence of the structural gene and of the C- and N-terminal flanking regions was determined. The structural gene codes for a polypeptide of 181 amino acids, including a 24-residue N-terminal signal sequence. The nucleotide sequence and the deduced amino acid sequence of the 1C subunit gene were compared with the sequences of the fimA gene, encoding the type 1 fimbrial subunit of E. coli K-12. The data show absolute homology at the N- and C-termini; there is less, but significant homology in the region between the N- and C-termini. Comparison of the amino acid compositions of the 1C and FimA subunit proteins with those of the F72 and PapA proteins (subunits for P-fimbriae) revealed that homology between these two sets of fimbrial subunits is also maximal at the N- and C-termini.  相似文献   

16.
The fimbriae of 50 strains of serotype Gallinarum and 35 strains of serotype Pullorum of the genus Salmonella were compared with the type-1 fimbriae of serotype Typhimurium strains by immune electron microscopy and dot blot hybridization tests with gene probes for type-1 fimbriation in Typhimurium. The fimbriae of Gallinarum and Pullorum strains were coated with Typhimurium type-1 fimbrial antiserum and probes hybridized strongly with DNA of Gallinarum and Pullorum strains under stringent conditions. Furthermore, when Typhimurium type-1 fimbrial antiserum, that had been absorbed with fimbriate Gallinarum or Pullorum bacteria, was used in immune gold labelling experiments, it was shown that residual antibody recognized sites of possible adhesin incorporation at intervals along the length of Typhimurium type-1 fimbriae. These findings suggest that the type-2 fimbriae produced by all Gallinarum and Pullorum strains are non-adhesive forms of adhesive, type-1 fimbriae. This observation is of interest because type-1 fimbriae have never been reported in naturally occurring strains of these two avian-adapted serotypes.  相似文献   

17.
The nucleotide sequence was determined of a region of 1450 base pairs encompassing the fimA gene for the subunit of type 1 fimbriae of Escherichia coli as well as flanking regions containing potential regulator sequences. The 'translated' protein contains a 23-residue signal peptide; the processed fimbrial subunit consists of 158 amino acid residues yielding a relative molecular mass of 15706. The elucidated sequence shows significant homology with those of other E. coli fimbrial proteins.  相似文献   

18.
19.
The biosynthesis of fimbriae is a complex process requiring multiple genes which are generally found clustered on the chromosome. In Bordetella pertussis, only major fimbrial subunit genes have been identified, and no evidence has yet been found that they are located in a fimbrial gene cluster. To locate additional genes involved in the biosynthesis of B. pertussis fimbriae, we used TnphoA mutagenesis. A PhoA+ mutant (designated B176) was isolated which was affected in the production of both serotype 2 and 3 fimbriae. Cloning and sequencing of the DNA region harbouring the transposon insertion revealed the presence of at least three additional fimbrial genes, designated fimB, fimC and fimD. The transposon was found to be located in fimD. Analysis of PhoA activity indicated that the fimbrial gene cluster was positively regulated by the bvg locus. A potential binding site for BvgA was observed upstream of fimB. FimB showed homology with the so-called chaperone-like fimbrial proteins, while FimC was homologous with a class of fimbrial proteins located in the outer membrane and presumed to be involved in transport and anchorage of fimbrial subunits. An insertion mutation in fimB abolished the expression of fimbrial subunits, implicating this gene in the biosynthesis of both serotype 2 and 3 fimbriae. Upstream of fimB a pseudogene (fimA) was observed which showed homology with the three major fimbrial subunit genes, fim2, fim3 and fimX. The construction of a phylogenetic tree suggested that fimA may be the primordial major fimbrial subunit gene from which the other three were derived by gene duplication. Interestingly, the fimbrial gene cluster was found to be located directly downstream from the gene coding for the filamentous haemagglutinin, an important B. pertussis adhesin, possibly suggesting co-operation between the two loci in the pathogenesis of pertussis.  相似文献   

20.
Expression of fimA, the structural gene for type 1 fimbriae of Escherichia coli, is phase variable. Significant homologies were identified between the recombinases which control fimbrial phase variation, FimB and FimE, and the integrase class of site-specific recombinases. Normal expression of fimA was shown to require the integration host factor (IHF). Mutations in either the himA-or the himD (hip) gene, which encode the alpha and beta subunits of IHF, respectively, prevented phase variation and locked expression of fimA in either the "on" or "off" phase. In addition, both himA and himD lesions caused a sevenfold reduction in expression of a phi(fimA-lacZ) operon fusion in strains in which fimA was locked in the on phase. Thus, IHF plays a dual role in controlling fimA expression: it is required both for inversion of the fimA control region and for efficient expression from the fimA promoter. A mechanism by which IHF may exert control over fimA expression is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号