首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mature and immature B cells differ in their responses to antigen receptor crosslinking. Whereas mature B cells enter cell cycle in response to such stimulation, immature B cells exhibit proliferative unresponsiveness and undergo induced tolerance following surface immunoglobulin (sIg) engagement. Previous studies evaluating antigen receptor-mediated negative signaling have utilized intact goat anti-immunoglobulin (anti-Ig) antibodies as polyclonal ligands based upon observations that the Fc portion of these reagents does not interact with and mediate negative signaling through the FcR on mature B cells. Thus, the negative effects of goat anti-Ig on immature B cells have been attributed solely to signals mediated via their antigen receptors. In the studies reported here we show that the activation unresponsiveness inherent to immature B cells is FcR independent. However, we also show that immature B cells are sensitive to FcR-mediated inhibition and that these effects can be mediated by intact goat antibodies at concentrations that promote positive activation signals in mature B cells. Our results demonstrate that inhibition of immature B cell LPS responses by anti-Ig antibodies, used in previous studies as an in vitro model for B cell tolerance induction, is an FcR-mediated phenomenon. We show that developmentally associated anti-Ig-mediated inhibition of LPS requires the use of intact antibodies, and that this inhibition can be blocked by the anti-FcR monoclonal antibody 2.4G2. Flow cytometric analysis of FcR-positive B cells indicates that both mature and immature B cells express equivalent levels of FcR gamma. Therefore, the sensitivity of immature, but not mature, cells to intact goat anti-mu antibodies suggests that either FcRs or their associated inhibitory pathways change during B cell development.  相似文献   

2.
An encounter of B cells with cognate self Ags in the periphery can lead to anergy, a condition characterized by altered anatomical localization, shortened life span, and refractility to Ag stimulation. We recently reported that an immature B cell encounter with cognate self-Ag in the bone marrow can also lead to anergy. In this study we show that anergic as well as acutely Ag-stimulated immature B cells are defective in stromal cell-derived factor-1 (SDF-1)-induced calcium mobilization and migration and do not localize to bone marrow following adoptive transfer. This hyporesponsiveness does not involve CXCR4 modulation. However, BCR signal-mediated hyporesponsiveness to SDF-1 is associated with phosphorylation of the 5-inositol phosphatase SHIP1 and requires SHIP1 expression. Therefore, an encounter with cognate Ag may, by preventing SDF-1-induced phosphatidylinositol 3,4,5-triphosphate accumulation, trigger premature emigration of immature B cells from bone marrow.  相似文献   

3.
Alloantibodies can play a key role in acute and chronic allograft rejection. However, relatively little is known of factors that control B cell responses following allograft tolerance induction. Using 3-83 Igi mice expressing an alloreactive BCR, we recently reported that allograft tolerance was associated with the sustained deletion of the alloreactive B cells at the mature, but not the immature, stage. We have now investigated the basis for the long-term control of alloreactive B cell responses in a non-BCR-transgenic model of C57BL/6 cardiac transplantation into BALB/c recipients treated with anti-CD154 and transfusion of donor-specific spleen cells. We demonstrate that the long-term production of alloreactive Abs by alloreactive B cells is actively regulated in tolerant BALB/c mice through the dominant suppression of T cell help. Deletion of CD25(+) cells resulted in a loss of tolerance and an acquisition of the ability to acutely reject allografts. In contrast, the restoration of alloantibody responses required both the deletion of CD25(+) cells and the reconstitution of alloreactive B cells. Collectively, these data suggest that alloreactive B cell responses in this model of tolerance are controlled by dominant suppression of T cell help as well as the deletion of alloreactive B cells in the periphery.  相似文献   

4.
Utilizing a PFC assay to quantitate the polyclonal activation of human peripheral blood B lymphocytes, we have investigated the induction and functional activity of MLC-derived human helper factor(s). Our data demonstrate that highly purified responder T cells, but not B or null cells, are required for the elaboration of MLC helper factor(s) that trigger the in vitro differentiation of B lymphocytes into PFC. Helper factor can trigger B cell maturation in the absence of helper T cells, since complement- (C) mediated lysis of the small (less than 5%) fraction of T cells present in anti-F(ab)2 immunoabsorbent column purified B cell population eliminates the PWM induced, but not the helper factor-induced PFC response. Responder T cells required for helper factor production do not bear surface membrane Ia, since alpha p23,30 + C treatment of this population does not affect helper factor generation. In contrast, alpha p23,30 + C treatment of the allogeneic stimulator cell population eliminates helper factor production. Taken together, these results demonstrate that interaction between Ia-bearing stimulator cells and Ia- responder T cells is required for the production of MLC-derived helper factor. In additional experiments, we determined that alpha p23,30, in the absence of C, totally abrogates the PFC response triggered by MLC helper factors. This result suggests an important role for Ia antigens in the functional activity of preformed helper factor molecules.  相似文献   

5.
The metabolic requirements of tolerance induction of immature B cells has been analyzed through the use of various putative inhibitors. The study utilizes the splenic fragment assay in which tolerance induction of individual B cells can be examined. Concentrations of inhibitors were determined which, if removed after the first 18 hr of culture, before antigenic stimulation, had no inhibitory effects. Thus, by adding tolerogen in the presence or absence of inhibitor during the first 18 hr of culture, the effect of that inhibitor on tolerance could be assessed. By using this protocol, the data indicate that several metabolic functions of the cell are necessary for tolerance induction to occur, including RNA biosynthesis, DNA biosynthesis, and a methyltransferase reaction, because drugs that interfere with these metabolic processes also prevent tolerance induction. Our previous studies indicated that protein biosynthesis and energy generation are also required. However, drugs that interact with the cytoskeletal structure of the cell and inhibit surface immunoglobulin capping do not interfere with tolerance induction. Moreover, colchicine, which inhibits cell division, does not inhibit B cell tolerance. Collectively, the results provide compelling evidence that the mechanism of immature B cell tolerance involves an active process requiring several metabolic activities of the cell.  相似文献   

6.
During the course of B lymphocyte development, newly emerging surface Ig+ B cells pass through a stage when Ag-Ag receptor interactions lead not to immune responsiveness but to a state of functional tolerance. We have explored the molecular basis of antigenic nonresponsiveness and tolerance susceptibility using tolerance-susceptible surface Ig+ splenic B lymphocytes from neonatal mice and anti-mu chain antibodies as a polyclonal ligand. In this population of cells, surface IgM is uncoupled from the inositol phospholipid (PI)-hydrolysis pathway at a point proximal to the receptor; anti-mu antibodies did not stimulate inositol phosphate generation despite the fact that PI-hydrolysis was observed after treatment with A1F4, implicating the existence of a functional G protein and phospholipase C. Further evidence for a difference early in the signal transduction pathway stems from the finding that anti-mu stimulation does not induce the expression of two immediate/early PKC-linked genes egr-1 and c-fos. This appears to be the primary signaling difference between the mature and immature B cells from the neonatal mouse splenic population, as these cells undergo a G0-G1 cell cycle phase transition when surface IgM is bypassed using phorbol diester and calcium ionophore. Interestingly, despite undetectable levels of PI-hydrolysis, we observed equivalent receptor-mediated changes in intracellular calcium when comparing the immature and mature populations. These results indicate incomplete coupling of surface IgM to the signal transduction machinery operative in mature, immunocompetent B cells and suggests a molecular mechanism accounting for the differential processing of surface IgM signals into activation vs tolerogenic responses observed in these two stages of B cell development.  相似文献   

7.
Activation-induced cell death (AICD) of mature T cells plays an important role in the control of immune homeostasis and peripheral tolerance. TNFRs and Fas have been implicated in the induction of AICD. However, these molecules were shown to be dispensable, at least in some experimental systems, for downsizing of Ag-induced T cell expansions and development of tolerance in vivo. The conditions of T cell activation leading to T cell deletion in a death receptor-independent manner are not well characterized. Here we show that human CTLs die through a death receptor-independent apoptotic program upon triggering with a partially agonistic peptide ligand. This apoptotic process exhibits some features of T cell death due to lymphokine deprivation and is blocked by exogenous IL-2. Our data demonstrate that engagement of TCR by MHC-peptide complexes can trigger diverse apoptotic programs of AICD and that the choice between these programs is determined by the agonistic potency of MHC-peptide ligand.  相似文献   

8.
African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves.  相似文献   

9.
It is clear that the development of an autoimmune disease usually depends on both a genetic predisposition and an environmental trigger. In this study, we demonstrate that BALB/c mice develop a lupus-like serology following immunization with a peptide mimetope of DNA, while DBA/2 mice do not. We further demonstrate that the critical difference resides within the B cell compartment and that the naive B cell repertoire of DBA/2 mice has fewer B cells specific for the DNA mimetope. Differences in the strength of B cell receptor signaling exist between these two strains and may be responsible for the difference in disease susceptibility. BALB/c mice possess more autoreactive cells in the native repertoire; they display a weaker response to Ag and exhibit less Ag-induced apoptosis of B cells. DBA/2 mice, in contrast, display a stronger B cell receptor signal and more stringent central tolerance. This correlates with resistance to lupus induction. Thus, the degree to which autoreactive B cells have been eliminated from the naive B cell repertoire is genetically regulated and may determine whether a nonspontaneously autoimmune host will develop autoimmunity following exposure to Ag.  相似文献   

10.
11.
To analyze B lymphocyte central tolerance in a polyclonal immune system, mice were engineered to express a superantigen reactive to IgM of allotype b (IgM(b)). IgM(b/b) mice carrying superantigen were severely B cell lymphopenic, but small numbers of B cells matured. Their sera contained low levels of IgG and occasionally high levels of IgA. In bone marrow, immature B cells were normal in number, but internalized IgM and had a unique gene expression profile, compared with those expressing high levels of surface IgM, including elevated recombinase activator gene expression. A comparable B cell population was defined in wild-type bone marrows, with an abundance suggesting that at steady state ~20% of normal developing B cells are constantly encountering autoantigens in situ. In superantigen-expressing mice, as well as in mice carrying the 3H9 anti-DNA IgH transgene, or 3H9 H along with mutation in the murine κ-deleting element RS, IgM internalization was correlated with CD19 downmodulation. CD19(low) bone marrow cells from 3H9;RS(-/-) mice were enriched in L chains that promote DNA binding. Our results suggest that central tolerance and attendant L chain receptor editing affect a large fraction of normal developing B cells. IgH(a/b) mice carrying the superantigen had a ~50% loss in follicular B cell numbers, suggesting that escape from central tolerance by receptor editing from one IgH allele to another was not a major mechanism. IgM(b) superantigen hosts reconstituted with experimental bone marrow were demonstrated to be useful in revealing pathways involved in central tolerance.  相似文献   

12.
B cells leave the bone marrow as transitional B cells. Transitional B cells represent a target of negative selection and peripheral tolerance, both of which are abrogated in vitro by mediators of T cell help. In vitro, transitional and mature B cells differ in their responses to B cell receptor ligation. Whereas mature B cells up-regulate the T cell costimulatory molecule CD86 (B7.2) and are activated, transitional B cells do not and undergo apoptosis. The ability of transitional B cells to process and present Ag to CD4 T cells and to elicit protective signals in the absence of CD86 up-regulation was investigated. We report that transitional B cells can process and present Ag as peptide:MHC class II complexes. However, their ability to activate T cells and elicit help signals from CD4-expressing Th cells was compromised compared with mature B cells, unless exogenous T cell costimulation was provided. A stringent requirement for CD28 costimulation was not evident in interactions between transitional B cells and preactivated CD4-expressing T cells, indicating that T cells involved in vivo in an ongoing immune response might rescue Ag-specific transitional B cells from negative selection. These data suggest that during an immune response, immature B cells may be able to sustain the responses of preactivated CD4(+) T cells, while being unable to initiate activation of naive T cells. Furthermore, the ability of preactivated, but not naive T cells to provide survival signals to B cell receptor-engaged transitional immature B cells argues that these B cells may be directed toward activation rather than negative selection when encountering Ag in the context of a pre-existing immune response.  相似文献   

13.
Lymphocyte activation, whether specific or nonspecific, is generally conceptualized as initiated by the binding of an activating ligand to a surface membrane receptor, followed by transduction of the signal across the cell membrane. In many situations several qualitatively distinct signals are required. We have recently described a new class of lymphocyte activator, the C8 bromine substituted guanine ribonucleosides, that traverse the cell membrane, bypassing classical triggering mechanism(s), apparently activating the lymphocyte at an intracellular site. However, the identity of the lymphocyte population(s) activated, as well as the nature of any cellular interactions involved in activation, has not been studied heretofore. The present experiments describe the cellular parameters of lymphocyte activation by a thiol substituted member of this class of activators, 8-mercaptoguanosine (8MGuo). Upon addition of this nucleoside derivative to cultures of murine spleen cells, a marked increase in [3H]TdR uptake and blast transformation ensues. Normal splenic B cells and spleen cells from congenitally athymic (nu/nu) mice are responsive to 8MGuo, whereas thymocytes and splenic T cells are not. Two subpopulations of B cells appear to be involved in the response to this nucleoside. The predominant one is a mature population that bears surface delta-chains, la antigens, C receptors, and (by indirect evidence) the Lyb3, 5, and 7 antigens. These cells also bear mu-chain and Fc receptors. In addition, a second, minor subpopulation of less mature cells that bear only mu-chain and Fc receptors also appears to be reactive to 8MGuo. The existence of this immature, reactive B cell subset was confirmed by observation of 8MGuo responsiveness in lymphocytes from 4-day-old mice whose cells do not yet exhibit these later-appearing markers. Accessory cells appear to play a minimal, if any, role in the 8MGuo response. These results establish two distinct B cell subpopulations as the major and minor cellular targets of C8-derivatized nucleosides, and suggest that the activation process results from a direct interaction between the nucleoside and target cell.  相似文献   

14.
Selective interference with the CD45RB isoform by mAb (anti-CD45RB) reliably induces donor-specific tolerance. Although previous studies suggest participation of regulatory T cells, a mechanistic understanding of anti-CD45RB-induced tolerance is lacking. We report herein the unexpected finding that tolerance induced by this agent is not established in B cell-deficient mice but can be recovered by preemptive B lymphocyte transfer to B cell-deficient hosts. Using B cells from genetically modified donors to reconstitute B cell-deficient recipients, we evaluate the role of B lymphocyte-expressed CD45RB, T cell costimulatory molecules, and the production of Abs in this novel tolerance mechanism. Our data document an Ab-induced tolerance regimen that is uniquely B lymphocyte-dependent and suggest mechanistic contributions to tolerance development from the B cell compartment through interactions with T cells.  相似文献   

15.
Immature B cells display increased sensitivity to tolerance induction compared with their mature counterparts. The molecular mechanisms underlying these differences are poorly defined. In this study, we demonstrate unique maturation stage-dependent differences in B cell Ag receptor (BCR) signaling, including BCR-mediated calcium mobilization responses. Immature B cells display greater increases in intracellular calcium concentrations following Ag stimulation. This has consequences for the induction of biologically relevant responses: immature B cells require lower Ag concentrations for activation than mature B cells, as measured by induction of receptor editing and CD86 expression, respectively. BCR-induced tyrosine phosphorylation of CD79a, Lyn, B cell linker protein, and phospholipase Cgamma2 is enhanced in immature B cells and they exhibit greater capacitative calcium entry in response to Ag. Moreover, B cell linker protein, Bruton's tyrosine kinase, and phospholipase Cgamma2, which are crucial for the induction of calcium mobilization responses, are present at approximately 3-fold higher levels in immature B cells, potentially contributing to increased mobilization of calcium. Consistent with this possibility, we found that the previously reported lack of inositol-1,4,5-triphosphate production in immature B cells may be explained by enhanced inositol-1,4,5-triphosphate breakdown. These data demonstrate that multiple mechanisms guarantee increased Ag-induced mobilization of calcium in immature B cells and presumably ensure elimination of autoreactive B cells from the repertoire.  相似文献   

16.
Ags introduced into the anterior chamber (AC) of the eye induce a form of peripheral immune tolerance termed AC-associated immune deviation (ACAID). ACAID mitigates ocular autoimmune diseases and promotes corneal allograft survival. Ags injected into the AC are processed by F4/80(+) APCs, which migrate to the thymus and spleen. In the spleen, ocular APCs induce the development of Ag-specific B cells that act as ancillary APCs and are required for ACAID induction. In this study, we show that ocular-like APCs elicit the generation of Ag-specific splenic B cells that induce ACAID. However, direct cell contact between ocular-like APCs and splenic B cells is not necessary for the induction of ACAID B cells. Peripheral tolerance produced by ACAID requires the participation of ACAID B cells, which induce the generation of both CD4(+) regulatory T cells (Tregs) and CD8(+) Tregs. Using in vitro and in vivo models of ACAID, we demonstrate that ACAID B cells must express both MHC class I and II molecules for the generation of Tregs. These results suggest that peripheral tolerance induced through the eye requires Ag-presenting B cells that simultaneously present Ags on both MHC class I and II molecules.  相似文献   

17.
Leptin is an adipokine that regulates body weight. In the current study, we demonstrate that continuous injection of leptin prevents the lymphocyte reduction observed in fasted mice, especially the immature B cell populations in the bone marrow. Although leptin administration reduced apoptotic cells in the bone marrow of fasted mice, it did not prevent glucocorticoid-mediated apoptosis in vitro. Bone marrow atrophy has also been shown in the leptin receptor-deficient db/db mice. In order to investigate the mechanisms underlying these processes, we transplanted bone marrow cells from db/db or control (+m/+m) mice into C.B-17/lcr-scid/scid mice. We found that the spleen and bone marrow B cell populations were completely reconstituted when db/db and +m/+m cells were transplanted into scid mice. Our findings suggest that direct interactions between leptin and bone marrow cells are not essential for the development of B cells in a metabologically normal environment.  相似文献   

18.
The T suppressor (Ts) cell population that functions to regulate antigen-specific MHC-restricted T helper (Th)-B cell interactions also regulates the activation of B cells by cloned autoreactive Th cells. Activated Ts cells were generated by in vivo priming and restimulation in vitro with high concentrations of the specific priming antigen. Once generated, this Ts population inhibits the Th-dependent activation of primed B cells by both antigen-specific and autoreactive T cells in an antigen-nonspecific manner. This suppression requires the participation of both Lyt-1+2- and Lyt-1-2+ T cells. It was also demonstrated that accessory cells were required for the induction of Ts cells. Moreover, the generation of suppression was MHC-restricted and required the recognition by T cells of Ia antigens on accessory cells. These studies demonstrate that the same or a very similar Ts cell population can function to inhibit the activation of B cells by antigen-specific as well as autoreactive T cells.  相似文献   

19.
The role of accessory cell populations in the generation of effector suppressor (Ts3) cells was studied. By using an in vitro culture system, it was previously determined that the induction of NP-specific effector suppressor activity requires T cells, antigen, and an anti-idiotypic B cell population. We now demonstrate that the generation of Ts3 cells in this system also requires accessory cells. The accessory population appears to play a role in the processing and presentation of antigen. These antigen-presenting accessory cells are required early in the induction phase of Ts3 generation. These accessory cells can present NP coupled to immunogenic or non-immunogenic polypeptide carriers, including polymers of L-amino acids. However, NP coupled to polymers of poorly metabolized D-amino acids fail to induce suppressor T cell generation. Furthermore, the data demonstrate that an H-2 homology must exist between the Ts3 precursors and the antigen-presenting cell population if suppressor activity is to be generated. We also characterize the differential genetic restrictions that govern the induction of Ts3 cells that control suppression of either T cell or B cell responses. The data suggest that although I-J region encoded gene products control the induction and effector phases of suppressor cell activity as measured on T cell responses, the suppression of B cell responses appear to be controlled by I-A gene products. Possible cellular mechanisms that might explain these findings are discussed.  相似文献   

20.
Two continuously growing nonmalignant B-cell lines specific for the hapten DNP have been used to study tolerance in developing B cells. These cell lines have previously been shown to consist of small cells without sIgM but with cytoplasmic mu chains, and mature sIgM- and sIgD-bearing cells. When the sIgM-negative cells are placed in culture, mature DNP-specific B cells begin to appear. The studies reported here have shown that when these cell lines were propagated in the presence of either 200 micrograms/ml or 1 mg/ml of the tolerogen DNP-MGG there was no inhibition of cell line growth as measured by thymidine incorporation, and no inhibition of receptor expression by maturing B cells. The cell line lymphocytes propagated in the presence of 200 micrograms/ml DNP-MGG for 7, 30, 45, or 60 days became tolerant and the tolerance persisted for at least 6 days after removal of DNP-MGG. However, tolerance was lost between 6 and 10 days after removal of DNP-MGG. Propagation of the cell lines for 30 days in either DNP-KLH or DNP-Ficoll produced the same results. Limiting dilution cultures of cell line lymphocytes made tolerant by growing them for 30 days in the presence of DNP-MGG demonstrated that there was a marked decrease in precursor frequency compared to controls. However, cell line lymphocytes made tolerant by a 48-hr incubation with DNP-MGG did not have a significant decrease in precursor frequency. These data suggest that tolerance induced by growing these cell lines in the presence of DNP-MGG is a valid in vitro model of tolerance in developing antigen-specific B cells. Tolerance induced in this model is consistent with the clonal anergy hypothesis, but requires the continued presence of DNP-MGG to maintain unresponsiveness. This suggests that clonal anergy can occur in B cells but may not be the sole mechanism of self tolerance for those antigens which are sequestered from the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号