首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circadian clock gene period (Gryllus bimaculatus period, Gbper) plays a core role in circadian rhythm generation in adults of the cricket Gryllus bimaculatus. We examined the role of Gbper in nymphal crickets that show a diurnal rhythm rather than the nocturnal rhythm of the adults. As in the adult optic lobes, Gbper mRNA levels in the head of the third instar nymphs showed daily cycling in light-dark cycles with a peak at mid night, and the rhythm persisted in constant darkness. Injection of Gbper double-stranded RNA (dsRNA) into the abdomen of third instar nymphs knocked-down the mRNA levels to 25% of that in control animals. Most Gbper dsRNA injected nymphs lost their circadian locomotor activity rhythm, while those injected with DsRed2 dsRNA as a negative control clearly maintained the rhythm. These results suggest that nymphs and adults share a common endogenous clock mechanism involving the clock gene Gbper.  相似文献   

2.
The photoperiodic response is crucial for many insects to adapt to seasonal changes in temperate regions. It was recently shown that the circadian clock genes period (per) and cycle (cyc) are involved in the photoperiodic regulation of reproductive diapause in the bean bug Riptortus pedestris females. Here, we investigated the involvement of per and cyc both in the circadian rhythm of cuticle deposition and in the photoperiodic diapause of R. pedestris males using RNA interference (RNAi). RNAi of per and cyc disrupted the cuticle deposition rhythm and resulted in distinct cuticle layers. RNAi of per induced development of the male reproductive organs even under diapause-inducing short-day conditions, whereas RNAi of cyc suppressed development of the reproductive organs even under diapause-averting long-day conditions. Thus, the present study suggests that the circadian clock operated by per and cyc governs photoperiodism of males as that of females.  相似文献   

3.
Adenoviruses have been used for gene transfer to salivary gland cells in vivo. Their use to study the function of salivary acinar cells was limited by a severe inflammatory response and by the destruction of fluid-secreting acinar cells. In the present study, low doses of adenovirus were administered to express Stim1-mKO1 by retrograde ductal injection to submandibular glands. The approach succeeded in increasing muscarinic stimulation-induced Ca2+ responses in acinar cells without inflammation or decreased salivary secretions. This increased Ca2+ response was notable upon weak muscarinic stimulation and was attributed to increased Ca2+ release from internal stores and increased Ca2+ entry. The basal Ca2+ level was higher in Stim1-mKO1-expressing cells than in mKO1-expressing and non-expressing cells. Exposure of permeabilized submandibular acinar cells, where Ca2+ concentration was fixed at 50 nM, to inositol 1,4,5-trisphosphate (IP3) produced similar effects on the release of Ca2+ from stores in Stim1-mKO1-expressing and non-expressing cells. The low toxicity and relative specificity to acinar cells of the mild gene transfer method described herein are particularly useful for studying the molecular functions of salivary acinar cells in vivo, and may be applied to increase salivary secretions in experimental animals and human in future.  相似文献   

4.
Although circadian rhythms are found in many peripheral tissues in insects, the control mechanism is still to be elucidated. To investigate the central and peripheral relationships in the circadian organization, circadian rhythms outside the optic lobes were examined in the cricket Gryllus bimaculatus by measuring mRNA levels of period (per) and timeless (tim) genes in the brain, terminal abdominal ganglion (TAG), anterior stomach, mid-gut, testis, and Malpighian tubules. Except for Malpighian tubules and testis, the tissues showed a daily rhythmic expression in either both per and tim or tim alone in LD. Under constant darkness, however, the tested tissues exhibited rhythmic expression of per and tim mRNAs, suggesting that they include a circadian oscillator. The amplitude and the levels of the mRNA rhythms varied among those rhythmic tissues. Removal of the optic lobe, the central clock tissue, differentially affected the rhythms: the anterior stomach lost the rhythm of both per and tim; in the mid-gut and TAG, tim expression became arrhythmic but per maintained rhythmic expression; a persistent rhythm with a shifted phase was observed for both per and tim mRNA rhythms in the brain. These data suggest that rhythms outside the optic lobe receive control from the optic lobe to different degrees, and that the oscillatory mechanism may be different from that of Drosophila.  相似文献   

5.
Though our knowledge of the molecular details of the circadian clock has advanced rapidly, the functional elements of the photoperiodic clock remain largely unknown. As a first step to approach this issue, we report here the sequences and expression patterns of period (per), timeless (tim), cycle (cyc) and cryptochrome (cry) mRNAs in the flesh fly Sarcophaga crassipalpis. Nucleotide and deduced amino acid sequences of the genes in S. crassipalpis show high similarity to homologous genes in other insects that have been investigated. S. crassipalpis TIM has a unique C-terminus that contains a poly Q region. A diel rhythmicity of per and tim mRNA abundance was detected in the adult heads (peak during scotophase), while cry and cyc mRNA abundance remained fairly constant throughout. The abundance of cyc mRNA was quite low when compared to per, tim and cry mRNA. Rearing temperature affected the amount of per and tim mRNAs: abundance of per mRNA increased at 20 °C when compared to 25 °C, but that of tim mRNA decreased. Photoperiod influenced the expression patterns of per and tim mRNA: the peak of per mRNA expression shifted in concert with onset of the scotophase, while a shift in tim mRNA expression was less pronounced. The amplitude of tim mRNA was severely dampened under long daylength, but that of per mRNA was not affected. These distinct patterns of expression suggest that this information could be used to determine photoperiodic responses such as diapause.  相似文献   

6.
We report differences in the length of a specific region of the circadian clock gene period (per) that correlate with different capacities for pupal diapause in the flesh fly, Sarcophaga bullata. The conspicuous difference is located in a region we refer to as the putative C-terminal photoperiodic (CP) region. The length of the CP region correlates inversely with the incidence of diapause. A deletion of 33 amino acids in this region correlates with a significant increase in the incidence of diapause, from 78.1% to 93.0%, and an insertion of 9 amino acids in the same area correlates with a drop in the diapause incidence to 4.0%. This correlation suggests a possible functional role for this region of per in photoperiodism.  相似文献   

7.
Theperiod(per) gene and thetimeless(tim) gene are essential components of the circadian clock inDrosophila melanogaster. Both gene products interact in interdependent feedback loops, producing a self-sustained cellular rhythmin situ. Several oscillating cells are combined to discrete pacemaker centers that control rhythmic behavior. This paper reviews the work on localizing the circadian pacemaker neurons controlling activity and eclosion, leading to questions about how these pacemaker cells are synchronized to the external light–dark cycle, and how they impose periodicity on behavior. The circadian system ofDrosophilais also compared with that of other arthropods.  相似文献   

8.
The circadian clock in the brain coordinates the phase of peripheral oscillators that regulate tissue-specific physiological outputs. Here we report that circadian variations in the expression and activity of Cu/Zn superoxide dismutase (SOD1; EC 1.15.1.1) are present in liver homogenates from mice. The SOD1 mRNA expression from wild-type (WT) mice peaked at Zeitgeber Time 9 (ZT9; 9 h after lights-on time). While there was no rhythmicity in that from period2 (per2) gene knockout (P2K) mice, the level of SOD1 from per1/per2 double knockout (DKO) mice was significantly elevated at ZT5. The enzyme activity of SOD1 was also rhythmic in the mouse liver. Moreover, the total amount of the SOD1 exhibited a rhythmic oscillation with a peak at ZT9 in the liver from WT mice. We also found that tert-butylhydroperoxide (t-BHP)-induced oxidative damage in both WT and P2K mouse embryonic fibroblast (MEF) cells resulted in the up-regulation of SOD1 levels. Our data suggest that the expression of an important antioxidant enzyme, SOD1, is under circadian clock control and that mice are more susceptible to oxidative stress depending on the time of day.  相似文献   

9.
10.
Conventionally, dye-exclusion test for determining cell viability has been restricted only for cells in suspension in tissue culture. In this paper, salivary gland of Chironomus has been proposed as a simple tissue model system where dye-exclusion test can be reliably employed for the intact gland. We have compared suitability of commonly used vital dyes and nigrosin was found suitable for the salivary gland cells. Biochemical tests using tetrazolium salts are also commonly used for determining quantitative indices of cell viability in metabolically active cells. Ours is the first attempt to extend the same technique for the whole tissue. We standardized the conditions and prepared a protocol for MTT-based colorimetric assay suitable for the salivary gland of Chironomus. A strong correlation (r2 = 0.9893) was obtained where increasing O.D. correlated linearly with the number of live glands. We concluded that nigrosin dye-exclusion and MTT metabolic inclusion assays are suitable methods for the viability test of metabolically active intact salivary gland of Chironomus which can serve as a potential model for the assessment of cytotoxicity in future.  相似文献   

11.
Summary Fluorescence intensity of isolated salivary gland cells of wild-type and arrhythmic (pero)Drosophila melanogaster larvae was measured in constant conditions. The glands were incubated in a medium containing 3.5×10–6M 3,3-dihexyl-oxacarbocyanine iodide for which cellular concentrations is probably controlled by the membrane potential. In wild-type cells significant rhythmicity of fluorescence intensity was measured over the cytoplasmic as well as the nuclear areas. In pero cells, arrhythmic and rhythmic changes were registered, the latter showing lower amplitudes. We conclude that the decreased amplitude and the lower number of significant cellular rhythms in pero mutants might lead to an apparent arrhythmicity at the behavioural level, i.e. activity and eclosion.  相似文献   

12.
The circadian clocks govern many metabolic and behavioral processes in an organism. In insects, these clocks and their molecular machinery have been found to influence reproduction in many different ways. Reproductive behavior including courtship, copulation and egg deposition, is under strong influence of the daily rhythm. At the molecular level, the individual clock components also have their role in normal progress of oogenesis and spermatogenesis. In this study on the desert locust Schistocerca gregaria, three circadian clock genes were identified and their expression profiles were determined. High expression was predominantly found in reproductive tissues. Similar daily expression profiles were found for period (per) and timeless (tim), while the clock (clk) mRNA level is higher 12 h before the first per and tim peak. A knockdown of either per or tim resulted in a significant decrease in the progeny produced by dsRNA treated females confirming the role of clock genes in reproduction and providing evidence that both PER and TIM are needed in the ovaries for egg development. Since the knockdown of clk is lethal for the desert locust, its function remains yet to be elucidated.  相似文献   

13.
Drosophila cryptochrome (CRY) is a key circadian photoreceptor that interacts with the period and timeless proteins (PER and TIM) in a light-dependent manner. We show here that a heat pulse also mediates this interaction, and heat-induced phase shifts are severely reduced in the cryptochrome loss-of-function mutant cryb. The period mutant perL manifests a comparable CRY dependence and dramatically enhanced temperature sensitivity of biochemical interactions and behavioral phase shifting. Remarkably, CRY is also critical for most of the abnormal temperature compensation of perL flies, because a perL; cryb strain manifests nearly normal temperature compensation. Finally, light and temperature act together to affect rhythms in wild-type flies. The results indicate a role for CRY in circadian temperature as well as light regulation and suggest that these two features of the external 24-h cycle normally act together to dictate circadian phase.  相似文献   

14.
In the resting state, the Ca2+ concentration in agonist-sensitive intracellular stores reflects the balance between active uptake of Ca2+, which is mediated by Ca2+-ATPase (SERCA), and passive leakage of Ca2+. The mechanisms underlying such a leakage in cells of the submaxillary salivary gland were not studied. In our experiments, we examined possible pathways of passive leakage of Ca2+ from the endoplasmic reticulum (ER) of acinar cells obtained from the rat submaxillary salivary gland; direct measurements of the concentration of Ca2+ in the ER ([Ca2+]ER) using a low-affinity calcium-sensitive dye, mag-fura 2/AM, were performed. The cellular membrane was permeabilized with the help of β-escin (40 μg/ml); the Ca2+ concentration in the cytoplasm ([Ca2+] i ) was clamped at its level typical of the resting state (∼100 nM) using an EGTA/Ca2+ buffer. Incubation of permeabilized acinar cells in a calcium-free intracellular milieu, as well as application of thapsigargin, resulted in complete inhibition of the uptake of Ca2+ with the involvement of SERCA. This effect was observed 1 min after the beginning of superfusion of the cells with the corresponding solutions and was accompanied by the leakage of Ca2+ from the ER; this is confirmed by a gradual drop in the [Ca2+]ER. Such a leakage of Ca2+ remained unchanged in the presence of thapsigargin, heparin, and ruthenium red; therefore, it is not mediated by SERCA, inositol 1,4,5-trisphosphate-sensitive receptors (InsP3R), or ryanodine receptors (RyRs). At the same time, an antibiotic, puromycin (0.1 to 1.0 mM), which disconnects polypeptides from the ER-ribosome translocon complex, caused intensification of passive leakage of Ca2+ from the ER. This effect did not depend on the functioning of SERCA, InsP3R, or RyR. Therefore, passive leakage of Ca2+ from the ER in acinar cells of the submaxillary salivary gland is realized through pores of the translocon complex of the ER membrane. Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 339–346, July–August, 2005.  相似文献   

15.
The Drosophila embryonic salivary gland is a migrating tissue that undergoes a stereotypic pattern of migration into the embryo. We demonstrate that the migratory path of the salivary gland requires the PDGF/VEGF pathway. The PDGF/VEGF receptor, Pvr, is strongly expressed in the salivary glands, and Pvr mutations cause abnormal ventral curving of the glands, suggesting that Pvr is involved in gland migration. Although the Pvr ligands, Pvf1 and Pvf2, have distinct expression patterns in the Drosophila embryo, mutations for either one of the ligands result in salivary gland migration defects similar to those seen in embryos that lack Pvr. Rescue experiments indicate that the PDGF/VEGF pathway functions autonomously in the salivary gland. The results of this study demonstrate that the Drosophila PDGF/VEGF pathway is essential for proper positioning of the salivary glands.  相似文献   

16.
17.
Ecdysteroids play an important role in the larval moulting process of insects. Ecdysone-induced stimulation causes specific puffs in polytene chromosomes of salivary gland cells resulting in nuclear swelling. During this process, changes of intracellular ion composition are thought to act as an early regulatory mechanism of gene activation. By use of video-imaging analysis and electrophysiological techniques, we examined ecdysone-induced nuclear swelling in Drosophila salivary glands in situ and its dependence on pH and calcium. Isolated glands of the third larval stage were superfused with a solution mimicking the haemolymph. Addition of 5×10–6 mol/l 20-OH-ecdysone led, after a lag period of 50 min, to a sustained Ca2+-dependent increase of nuclear volume by 23.0±2.3%. Amiloride, a blocker of plasma membrane Na+/H+ exchange, prevented 20-OH-ecdysone-induced nuclear swelling. Decreasing pH in the superfusate from 7.15 to 6.8 led to nuclear shrinkage by 16.9±3.9%. Measurments of pH in salivary gland cells with ion-sensitive microelectrodes disclosed an alkalinization of 0.23±0.05 pH units after stimulation with 20-OH-ecdysone. We postulate that 20-OH-ecdysone activates the amilorde-sensitive plasma membrane Na+/H+ exchanger. This leads to intracellular alkalinization and concomitant decondensation of the nuclear chromatin visible as nuclear swelling. Thus, cell alkalinization could be a potentially important stimulatory mechanism in mediating ecdysteroid-induced activation of the cell nucleus.  相似文献   

18.
Hyperactivation of the Wingless-type (Wnt)/β-catenin pathway promotes tumor initiation, tumor growth and metastasis in various tissues. Although there is evidence for the involvement of Wnt/β-catenin pathway activation in salivary gland tumors, the precise mechanisms are unknown. Here we report for the first time that downregulation of the Wnt inhibitory factor 1 (WIF1) is a widespread event in salivary gland carcinoma ex-pleomorphic adenoma (CaExPA). We also show that WIF1 downregulation occurs in the CaExPA precursor lesion pleomorphic adenoma (PA) and indicates a higher risk of progression from benign to malignant tumor. Our results demonstrate that diverse mechanisms including WIF1 promoter hypermethylation and loss of heterozygosity contribute to WIF1 downregulation in human salivary gland tumors. In accordance with a crucial role in suppressing salivary gland tumor progression, WIF1 re-expression in salivary gland tumor cells inhibited cell proliferation, induced more differentiated phenotype and promoted cellular senescence, possibly through upregulation of tumor-suppressor genes, such as p53 and p21. Most importantly, WIF1 significantly diminished the number of salivary gland cancer stem cells and the anchorage-independent cell growth. Consistent with this observation, WIF1 caused a reduction in the expression of pluripotency and stemness markers (OCT4 and c-MYC), as well as adult stem cell self-renewal and multi-lineage differentiation markers, such as WNT3A, TCF4, c-KIT and MYB. Furthermore, WIF1 significantly increased the expression of microRNAs pri-let-7a and pri-miR-200c, negative regulators of stemness and cancer progression. In addition, we show that WIF1 functions as a positive regulator of miR-200c, leading to downregulation of BMI1, ZEB1 and ZEB2, with a consequent increase in downstream targets such as E-cadherin. Our study emphasizes the prognostic and therapeutic potential of WIF1 in human salivary gland CaExPA. Moreover, our findings demonstrate a novel mechanism by which WIF1 regulates cancer stemness and senescence, which might have major implications in the field of cancer biology.  相似文献   

19.
Daily fluctuation of permethrin-resistance was found in adult mosquito Aedes aegypti, the major vector of dengue viruses in Taiwan. We hypothesized there is a relationship between resistance and the circadian clock. To test our hypothesis we correlated changes in the knock-down time (KT50) response to permethrin with the expression of the pyrethroid-resistant gene CYP9M9 and the clock gene period (per) during a 12:12 h photoperiodic cycle. Rhythmic expression of per peaked at early scotophase of the light-dark cycle and at early subjective night in constant darkness. The values of KT50 and the expression of CYP9M9 also exhibited circadian rhythms in both susceptible and permethrin-resistant mosquito strains, from which we inferred a link to the circadian clock. The KT50 was significantly longer in the light than in the dark phase, and the level of CYP9M9 mRNA was maximal in early scotophase, dropped to a minimum in the midnight and then slowly increased through the photophase. Existence of a clock control over mosquito sensitivity to permethrin was further indicated by reduced expression of CYP9M9 and reduced mosquito resistance to permethrin after temporal silencing of the per gene. These data provide the first evidence on the circadian control of insect resistance to permethrin.  相似文献   

20.
In this study, we have further characterized the morphology and physiology of the neuroglandular synapse between the identified buccal neuron, B4, and the salivary gland ofHelisoma. We demonstrate that the coupling coefficient between salivary cells within an individual acinus is approximately 1.0. We also demonstrate that synapses within the salivary gland are located near a superficial muscle layer. We examine the effects of glutamate on the salivary gland and on the B4-salivary gland EPSP.l-glutamate produces a transient, rapid onset depolarization of salivary gland cells. The response is mimicked by high concentrations ofl-homocysteic acid, but not by NMDA,l-aspartate,d-glutamate or kainate. The response is blocked by the presence ofl- ord-glutamate in the bath, but not by CNQX, DNQX, DGG,d-AP5, orl-AP3. The depolarization is primarily dependent on the presence of calcium in the bathing solution. When eitherl- ord-glutamate is present in the bathing solution, the amplitude of the B4-salivary gland EPSP is reversibly reduced. The similar pharmacological properties of the response of the salivary gland to glutamate and the B4 epsp indicate thatl-glutamate is a strong candidate for the fast excitatory neurotransmitter at theHelisoma neuroglandular synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号