首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to solar ultraviolet light is the major cause of most skin cancers. While the genotoxic properties of UVB radiation are now well understood, the DNA damaging processes triggered by less energetic but more abundant UVA photons remain to be elucidated. Evidence has been provided for the induction of oxidative lesions to cellular DNA including strand breaks and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). Formation of cyclobutane pyrimidine dimers (CPDs) has also been reported, mostly in rodent cells. In order to gain insights into the relevance of the latter photoproducts in UVA-mutagenesis of human skin, we quantified the level of 8-oxodGuo and CPDs within primary cultures of normal fibroblasts and keratinocytes using specific chromatographic assays. The yield of formation of CPDs was found to be higher than that of 8-oxodGuo in both cell types. In addition, CPDs were mostly TT derivatives, and neither (6-4) photoproducts nor Dewar valence isomers were detected. These observations are reminiscent of results obtained in rodent cells and suggest that a photosensitized triplet energy transfer occurs and that this reaction is more efficient than photooxidation of DNA components. The predominant formation of CPDs with respect to oxidative damage within normal human skin cells exposed to UVA radiation should be taken into account in photoprotection strategies.  相似文献   

2.
3.
Ultraviolet A radiation (UVA, 320–400 nm) is mutagenic and induces genomic damage to skin cells. N-acetyl-cysteine (NAC), selenium and zinc have been shown to have antioxidant properties and to exhibit protective effects against UVA cytotoxicity. The present work attempts to delineate the effect of these compounds on genomic integrity of human skin fibroblasts exposed to UVA radiation using the single cell gel electrophoresis (SCGE) or Comet assay. The cells were incubated with NAC (5 mM), sodium selenite (0.6 μM) or zinc chloride (100 μM). Then cells were embedded in low melting point agarose, and immediately submitted to UVA fluences ranging from 1 to 6J/cm2. In the Comet assay, the tail moment increased by 45% (1J/cm2) to 89% (6J/cm2) in non-supplemented cells (p<0.01). DNA damage was significantly prevented by NAC, Se and Zn, with a similar efficiency from 1 to 4J/cm2 (p<0.05). For the highest UVA dose (6J/cm2), Se and Zn were more effective than NAC (p<0.01).  相似文献   

4.
Mechanisms of UVA-mutagenesis remain a matter of debate. Earlier described higher rates of mutation formation per pyrimidine dimer with UVA than with UVB and other evidence suggested that a non-pyrimidine dimer-type of DNA damage contributes more to UVA- than to UVB-mutagenesis. However, more recently published data on the spectra of UVA-induced mutations in primary human skin cells and in mice suggest that pyrimidine dimers are the most common type of DNA damage-inducing mutations not only with UVB, but also with UVA. As this rebuts a prominent role of non-dimer type of DNA damage in UVA-mutagenesis, we hypothesized that the higher mutation rate at UVA-induced pyrimidine dimers, as compared to UVB-induced ones, is caused by differences in the way UVA- and UVB-exposed cells process DNA damage. Therefore, we here compared cell cycle regulation, DNA repair, and apoptosis in primary human fibroblasts following UVB- and UVA-irradiation, using the same physiologic and roughly equimutagenic doses (100-300 J m(-2) UVB, 100-300 kJ m(-2) UVA) we have used previously for mutagenesis experiments with the same type of cells. ELISAs for the detection of pyrimidine dimers confirmed that much fewer dimers were formed with these doses of UVA, as compared to UVB. We found that cell cycle arrests (intra-S, G1/S, G2/M), mediated at least in part by activation of p53 and p95, are much more prominent and long-lasting with UVB than with UVA. In contrast, no prominent differences were found between UVA and UVB for other anti-mutagenic cellular responses (DNA repair, apoptosis). Our data suggest that less effective anti-mutagenic cellular responses, in particular different and shorter-lived cell cycle arrests, render pyrimidine dimers induced by UVA more mutagenic than pyrimidine dimers induced by UVB.  相似文献   

5.
The effect of He-Ne laser (632.8 nm) pre-irradiation on UVA (343 nm)-induced DNA damage in the human B-lymphoblast cell line NC37 was investigated using the comet assay. He-Ne laser pre-irradiation was observed to result in a dose-dependent decrease in UVA-induced DNA damage. This effect was also found to be dependent on the incubation period between He-Ne laser pre-irradiation and the UVA exposure. Whereas the control cells with a higher DNA damage point to an initial ability of faster repair, both the control and the He-Ne laser pre-irradiated cells subsequently show the same rate of DNA repair. The results suggest that He-Ne laser irradiation protect the cells from UVA-induced DNA damage primarily through an influence on processes that prevent an initial DNA damage. Received: 10 April 2000 / Accepted: 24 November 2000  相似文献   

6.
Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency – with particular reference to NER and skin cancer risk.  相似文献   

7.
Besaratinia A  Synold TW  Xi B  Pfeifer GP 《Biochemistry》2004,43(25):8169-8177
Ultraviolet A (UVA) radiation received from the sun and from the widespread use of tanning beds by populations residing in areas of northern latitude represents a potential risk factor for human health. The genotoxic and cancer-causing effects of UVA have remained controversial. A mutagenic role for UVA based on DNA damage formation by reactive oxygen species as well as by generation of photoproducts such as cyclobutane pyrimidine dimers (CPDs) has been suggested. Here, we investigated the mutagenicity of UVA in relation to its DNA damaging effects in transgenic Big Blue mouse embryonic fibroblasts. We determined the formation of a typical oxidative DNA lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and of CPDs, as well as quantified the induction of mutations in the cII transgene in cells irradiated with a 2000 W UVA lamp. UVA irradiation at a dose of 18 J/cm(2) produced significant levels of 8-oxo-dG in DNA (P < 0.03) but did not yield detectable CPDs. UVA irradiation also increased the cII mutant frequency almost 5-fold over background (P < 0.01) while showing moderate cytotoxicity (70% cell viability). UVA-induced mutations were characterized by statistically significant increases in G-to-T transversions and small tandem base deletions (P = 0.0075, P = 0.008, respectively) relative to spontaneously derived mutations. This mutational spectrum differs from those previously reported for UVA in other test systems; however, it corresponds well with the known spectrum of mutations established for oxidative base lesions such as 8-oxo-dG. We conclude that UVA has the potential to trigger carcinogenesis owing to its mutagenic effects mediated through oxidative DNA damage.  相似文献   

8.
Human 8-oxoguanine-DNA glycosylase 1 (hOGG1) repairs 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) which results from oxidation of guanine. Reactive oxygen species (ROS) formed in response to ultraviolet (UV) radiation cause this DNA damage, which is involved in pathological processes such as carcinogenesis and aging. The initiation of skin tumors probably requires penetration of UV to the actively dividing basal layer of the epidermis in order for acute damage to become fixed as mutations. Previously, the majority of UVB fingerprint mutations have been found in the upper layers of human skin tumors, while UVA mutations have been found mostly in the lower layer. Our aim was to determine whether this localization of UVA-induced DNA damage is related to stratification of the repair-enzyme hOGG1. Anti-hOGG1 immunohistochemical staining of frozen sections of human foreskin, adult buttock skin, and reconstructed human skin samples showed the highest expression of hOGG1 in the superficial epidermal layer (stratum granulosum). Study of the hOGG1 mRNA expression again showed the highest level in the upper region of the epidermis. This was not regulated by UV irradiation but by the differentiation state of keratinocytes as calcium-induced differentiation increased hOGG1 gene expression. UVA-induced 8-oxo-dG was repaired more rapidly in the upper layer of human skin compared to the lower layers. Our results indicate that weaker expression of the nuclear form of hOGG1 enzyme in the basal cells of the epidermis may lead to a lack of DNA repair in these cells and therefore accumulation of UVA-induced oxidative DNA mutations.  相似文献   

9.
Matrix metalloproteinases (MMPs) are thought to be responsible for dermal photoaging in human skin. In the present study, we evaluated the involvement of macrophage migration inhibitory factor (MIF) in MMP-1 expression under ultraviolet A (UVA) irradiation in cultured human dermal fibroblasts. UVA (20 J/cm(2)) up-regulates MIF production, and UVA-induced MMP-1 mRNA production is inhibited by an anti-MIF antibody. MIF (100 ng/ml) was shown to induce MMP-1 in cultured human dermal fibroblasts. We found that MIF (100 ng/ml) enhanced MMP-1 activity in cultured fibroblasts assessed by zymography. Moreover, we observed that fibroblasts obtained from MIF-deficient mice were much less sensitive to UVA regarding MMP-13 expression than those from wild-type BALB/c mice. Furthermore, after UVA irradiation (10 J/cm(2)), dermal fibroblasts of MIF-deficient mice produced significantly decreased levels of MMP-13 compared with fibroblasts of wild-type mice. Next we investigated the signal transduction pathway of MIF. The up-regulation of MMP-1 mRNA by MIF stimulation was found to be inhibited by a PKC inhibitor (GF109203X), a Src-family tyrosine kinase inhibitor (herbimycin A), a tyrosine kinase inhibitor (genistein), a PKA inhibitor (H89), a MEK inhibitor (PD98089), and a JNK inhibitor (SP600125). In contrast, the p38 inhibitor (SB203580) was found to have little effect on expression of MMP-1 mRNA. We found that PKC-pan, PKC alpha/beta II, PKC delta (Thr505), PKC delta (Ser(643)), Raf, and MAPK were phosphorylated by MIF. Moreover, we demonstrated that phosphorylation of PKC alpha/beta II and MAPK in response to MIF was suppressed by genistein, and herbimycin A as well as by transfection of the plasmid of C-terminal Src kinase. The DNA binding activity of AP-1 was significantly up-regulated 2 h after MIF stimulation. Taken together, these results suggest that MIF is involved in the up-regulation of UVA-induced MMP-1 in dermal fibroblasts through PKC-, PKA-, Src family tyrosine kinase-, MAPK-, c-Jun-, and AP-1-dependent pathways.  相似文献   

10.
The potency of UVA radiation, representing 90% of solar UV light reaching the earth׳s surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1 J/cm2 was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5 M Na+, implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.  相似文献   

11.
Ultraviolet Al (UVA1) radiation generates reactive oxygen species and the oxidative stress is known as a mediator of DNA damage and of apoptosis. We exposed cultured human cutaneous fibroblasts to UVA1 radiation (wavelengths in the 340–450-nm range with emission peak at 365 nm) and, using the alkaline unwinding method, we showed an immediate significant increase of DNA strand breaks in exposed cells. Apoptosis was determined by detecting cytoplasmic nucleosomes (enzyme-linked immunosorbent assay method) at different time points in fibroblasts exposed to different irradiation doses. In our conditions, UVA1 radiation induced an early (8 h) and a delayed (18 h) apoptosis. Delayed apoptosis increased in a UVA dosedependent manner. Zinc is an important metal for DNA protection and has been shown to have inhibitory effects on apoptosis. The addition of zinc (6.5 mg/L) as zinc chloride to the culture medium significantly decreased immediate DNA strand breaks in human skin fibroblasts. Moreover, zinc chloride significantly decreased UVA1-induced early and delayed apoptosis. Thus, these data show for the first time in normal cutaneous cultured cells that UVA1 radiation induces apoptosis. This apoptosis is biphasic and appears higher 18 h after the stress. Zinc supplementation can prevent both immediate DNA strand breakage and early and delayed apoptosis, suggesting that this metal could be of interest for skin cell protection against UVA1 irradiation.  相似文献   

12.
Sunlight ultraviolet A (UVA) irradiation has been implicated in the etiology of human skin cancer. A genotoxic mode of action for UVA radiation has been suggested that involves photosensitization reactions giving rise to promutagenic DNA lesions. We investigated the mutagenicity of UVA in the lacI transgene in Big Blue mouse embryonic fibroblasts. UVA irradiation of these cells at a physiologically relevant dose of 18J/cm(2) caused a 2.8-fold increase in the lacI mutant frequency relative to control, i.e., 12.12+/-1.84 versus 4.39+/-1.99 x 10(-5) (mean+/-S.D.). DNA sequencing analysis showed that of 100 UVA-induced mutant plaques and 54 spontaneously arisen control plaques, 97 and 51, respectively, contained a minimum of one mutation along the lacI transgene. The vast majority of both induced- and spontaneous mutations were single base substitutions, although less frequently, there were also single and multiple base deletions and insertions, and tandem base substitutions. Detailed mutation spectrometry analysis revealed that G:C-->T:A transversions, the signature mutations of oxidative DNA damage, were significantly induced by UVA irradiation (P<0.003). The absolute frequency of this type of mutations was 7.4-fold increased consequent to UVA irradiation as compared to control (3.38 versus 0.454 x 10(-5); P<0.00001). These findings are in complete agreement with those previously observed in the cII transgene of the same model system, and reaffirm the notion that intracellular photosensitization reactions causing promutagenic oxidative DNA damage are involved in UVA genotoxicity.  相似文献   

13.
The present study analyzes the expression of the thioredoxin/thioredoxin reductase (Trx/TR) system in UVA-irradiated human skin fibroblasts. Irradiation increases the intracellular level of Trx and a time-dependent increase of Trx mRNA is observed. Our data indicate that Trx translocates from the cytoplasm to the nucleus. In addition, UV exposure results in an increase in TR synthesis. In order to evaluate the function of Trx/TR system, we investigated the antioxidant role of Trx in transient transfected cells. The ROS accumulation in UVA irradiated cells was assessed using flow cytometry. A 3-fold decrease in ROS production was observed in transiently transfected fibroblasts. These results indicate that Trx acts as an antioxidant protein in UVA irradiated fibroblasts. As ROS are inducers of cell death, this raises the question as to whether Trx is able to protect cells from apoptosis and/or necrosis induced by UVA. Six hours after UVA-irradiation, 29.92% of cells were annexin-V positive. This population was significantly reduced in Trx-transfected cells (8.58%). Moreover, this work demonstrates that Trx prevents the loss of the membrane potential of the mitochondria, the depletion of cellular ATP content, and the loss of cell viability induced by irradiation.  相似文献   

14.
Solar ultraviolet A (UVA) radiation induces many responses in skin including oxidative stress, DNA damage, inflammation, and skin cancer. Smith-Lemli-Opitz syndrome (SLO-S) patients show dramatically enhanced immediate (5 min) and extended (24-48 h) skin inflammation in response to low UVA doses compared to normal skin. Mutations in Delta7-dehydrocholesterol reductase, which converts 7-dehydrocholesterol to cholesterol, produces high levels of 7-dehydrocholesterol in SLO-S patient's serum. Since 7-dehydrocholesterol is more rapidly oxidized than cholesterol, we hypothesized that 7-dehydrocholesterol enhances UVA-induced oxidative stress leading to keratinocyte death and inflammation. When keratinocytes containing high 7-dehydrocholesterol and low cholesterol were exposed to UVA (10 J/cm2), eightfold greater reactive oxygen species (ROS) were produced than in normal keratinocytes after 15 min. UVA induced 7-dehydrocholesterol concentration-dependent cell death at 24 h. These responses were inhibited by antioxidants, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor (diphenyleneiodonium) and a mitochondria-specific radical quencher. Cell death was characterized by activation of caspases-3, -8, and -9 and by phosphatidylserine translocation. Studies using antioxidants and specific caspase inhibitors indicated that activation of caspase-8, but not caspase-9, mediates ROS-dependent caspase-3 activation and suggested that ROS from NADPH oxidase activate caspase-8. These results support a ROS-mediated apoptotic mechanism for the enhanced UVA-induced inflammation in SLO-S patients.  相似文献   

15.
The ultraviolet A component of sunlight causes both acute and chronic damage to human skin. In this study the potential of epicatechin, an abundant dietary flavanol, and 3'-O-methyl epicatechin, one of its major in vivo metabolites, to protect against UVA-induced damage was examined using cultured human skin fibroblasts as an in vitro model. The results obtained clearly show that both epicatechin and its metabolite protect these fibroblasts against UVA damage and cell death. The hydrogen-donating antioxidant properties of these compounds are probably not the mediators of this protective response. The protection is a consequence of induction of resistance to UVA mediated by the compounds and involves newly synthesized proteins. The study provides clear evidence that this dietary flavanol has the potential to protect human skin against the deleterious effects of sunlight.  相似文献   

16.
We have previously demonstrated that each region of the ultraviolet (UV) spectrum (UVA, UVB, and UVC) induces the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) in purified calf thymus DNA and HeLa cells in a fluence-dependent manner. In the present study, we further characterize the possible reactive oxygen species (ROS) that are involved in the induction of 8-oxodGuo by UV radiation. Sodium azide, a singlet oxygen (1O2) scavenger though its quenching effect on HO· was also reported, inhibited 8-oxodGuo production in calf thymus DNA exposed to UVA, UVB, or UVC in a concentration-dependent fashion with maximal quenching effect of over 90% at a concentration of 10 mM. Catalase, at a concentration of 50 U/ml, reduced the yields of UVA- and UVB-induced 8-oxodGuo formation by approximately 50%, but had little effect on UVC-induced 8-oxodGuo production. In contrast, 50 U/ml of superoxide dismutase (SOD) did not affect induction of 8-oxodGuo by any portion of the UV spectrum. Hydroxyl radical (HO·) scavengers mannitol and dimethylsulfoxide (DMSO) moderately reduced the levels of 8-oxodGuo induced by UVA and UVB, but not those by UVC. Instead, mannitol and DMSO enhanced the formation of 8-oxodGuo induced by UVC. These results suggest that certain types of ROS are involved in UV-induced 8-oxodGuo formation with 1O2 playing the predominant role throughout the UV spectrum. Except for UVC, other ROS such as hydrogen peroxide (H2O2) and HO· may also be involved in UVA- and UVB-induced oxidative DNA damage. Superoxide anion appears not to participate in UV-induced oxidation of guanosine in calf thymus DNA, as SOD did not display any quenching effects.  相似文献   

17.
Ultraviolet A (UVA) radiation is an oxidizing agent that strongly induces the heme oxygenase 1 (HO-1) gene and expression of the protein in cultured human skin fibroblasts but weakly induces it in skin keratinocytes. Lower basal levels of HO-1 and much higher basal levels of HO-2 protein are observed in keratinocytes compared with fibroblasts. Using both overexpression and knockdown approaches, we demonstrate that HO-2 modulates basal and UVA-induced HO-1 protein levels, whereas HO-1 levels do not affect HO-2 levels in skin fibroblasts and keratinocytes. Silencing of Bach1 strongly increases HO-1 levels in transformed HaCaT keratinocytes and these HO-1 levels are not further increased by either UVA irradiation or silencing of HO-2. This is consistent with the conclusion that high constitutive levels of HO-2 expression in keratinocytes are responsible for the resistance of these cells to HO-1 induction by UVA radiation and that Bach1 plays a predominant role in influencing the lack of HO-1 expression in keratinocytes. Bach1 inhibition leading to HO-1 induction reduced UVA-irradiation-induced damage as monitored both by the extent of LDH release and by nuclear condensation, so that Bach1 inhibition seems to protect against UVA-irradiation-induced damage in keratinocytes.  相似文献   

18.
Ultraviolet A (UVA) radiation is implicated in the etiology of human skin cancer. However, the underlying mechanism of carcinogenicity for UVA is not fully delineated. A mutagenic role for UVA has been suggested, which involves activation of endogenous photosensitizers generating oxidative DNA damage. We investigated the mutagenicity of UVA alone and in combination with delta-aminolevulinic acid (delta-ALA), a precursor of the intracellular photosensitizers porphyrins, in transgenic Big Blue mouse embryonic fibroblasts. A significant generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), a typical promutagenic oxidative DNA lesion, was observed in cells treated with a combination of delta-ALA (1 mM) and UVA (0.06 J/cm(2)) as quantified by high-pressure liquid chromatography-tandem mass spectrometry (p < 0.001; relative to the control). The steady-state level of 8-oxo-dG, however, remained unchanged in cells irradiated with UVA or treated with delta-ALA alone. Other photolesions including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts were not detectable in cells treated with delta-ALA and/or irradiated with UVA as determined by terminal transferase-dependent polymerase chain reaction assay. Mutation analyses of the cII transgene in cells treated with a combination of delta-ALA and UVA showed an approximately 3-fold increase in mutant frequency relative to the control (p < 0.008), as well as a unique induced mutation spectrum as established by DNA sequence analysis (p < 0.005; 95% CI, 0.002-0.009). No mutagenic effects were observed in cells irradiated with UVA or treated with delta-ALA alone. The spectrum of mutations produced by delta-ALA plus UVA was characterized by a significantly increased frequency of G --> T transversions (p < 0.0003; relative to the control), which are the hallmark mutations induced by 8-oxo-dG. Notably, the 8-oxo-dG-mediated mutagenicity of UVA plus delta-ALA is similar to that established previously for UVA alone at a mutagenic dose of 18 J/cm(2). We conclude that, in the presence of exogenous photosensitizers, UVA at a nonmutagenic dose induces mutations through the same mechanism as does a mutagenic dose of UVA per se.  相似文献   

19.
It has been suggested that β-carotene itself is unstable under certain conditions and that a combination of antioxidants may prevent the pro-oxidative effects of β-carotene. Thus, the present study aimed to investigate the interaction of β-carotene with three flavonoids—naringin, rutin and quercetin—on DNA damage induced by ultraviolet A (UVA) in C3H10T1/2 cells, a mouse embryo fibroblast. The cells were preincubated with β-carotene and/or flavonoid for 1 h followed by UVA irradiation, and DNA damage was measured using comet assay. We showed that β-carotene at 20 μM enhanced DNA damage (by 35%; P<.05) induced by UVA (7.6 kJ/m2), whereas naringin, rutin and quercetin significantly decreased UVA-induced DNA damage. When each flavonoid was combined with β-carotene during preincubation, UVA-induced cellular DNA damage was significantly suppressed and the effects were in the order of naringin≥rutin>quercetin. The flavonoids decreased UVA-induced oxidation of preincorporated β-carotene in the same order. Using electron spin resonance spectroscopy, we showed that the ability of these flavonoids to quench singlet oxygen was consistent with protection against DNA damage and β-carotene oxidation. All three flavonoids had some absorption at the UVA range (320–380 nm), but the effects were opposite to those on DNA damage and β-carotene oxidation. Taken together, this cell culture study demonstrates an interaction between flavonoids and β-carotene in UVA-induced DNA damage, and the results suggest that a combination of β-carotene with naringin, rutin or quercetin may increase the safety of β-carotene.  相似文献   

20.
Ultraviolet A (UVA) radiation represents more than 90% of the solar UV radiation reaching Earth's surface. Exposure to solar UV radiation is a major risk in the occurrence of non-melanoma skin cancer. Whole genome sequencing data of melanoma tumors recently obtained makes it possible also to definitively associate malignant melanoma with sunlight exposure. Even though UVB has long been established as the major cause of skin cancer, the relative contribution of UVA is still unclear. In this review, we first report on the formation of DNA damage induced by UVA radiation, and on recent advances on the associated mechanism. We then discuss the controversial data on the UVA-induced mutational events obtained for various types of eukaryotic cells, including human skin cells. This may help unravel the role of UVA in the various steps of photocarcinogenesis. The connection to photocarcinogenesis is more extensively discussed by other authors in this issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号