首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UV radiation survival curve of exponentially growing cultures of Escherichia coli B/r WP2 trpE65 was modified by pretreatment for short incubation periods (up to 20 min) with chloramphenicol such that an extended exponential section of intermediate slope appeared between the shoulder and the final exponential slope. Surges of mutation to tryptophan independence occurred with each increase in slope of the survival curve. These surges were separated by extended sections of little mutation. Nalidixic acid prevented both the changes in survival and mutation. Mutation curves obtained with overnight cultures had three extended sections of little mutation alternating with sections of high mutation. Reincubation for 60 min in fresh medium reduced or eliminated the low-response sections. These reappeared after 80 to 90 min, when DNA had doubled in the culture and before the initial synchronous cell divisions had occurred. Nalidixic acid prevented this reappearance.  相似文献   

2.
The shoulder of the UV fluence-survival curve of exponentially growing Escherichia coli B/r WP2 trpE65 was expanded by chloramphenicol pretreatment and an exponential segment with intermediate slope appeared between the shoulder and the final exponential segment. These changes were dependent on DNA replication. The transitions with UV exposure to increased slopes were ascribed to UV inactivation of qualitatively different repair systems, each dependent upon the accumulation in each bacterium of multiple DNA-containing redundant repair components, which must be inactivated before the respective transitions to decreased resistance occur. Rifampin, which blocks DNA-dependent RNA polymerase function, limited drastically expansion of the shoulder and development of the intermediate exponential slope. Bacteria defective in DNA polymerase I (polA) showed only a slight expansion of the shoulder with pretreatment with chloramphenicol. Since certain bacterial plasmids require RNA primer formation for initiation of replication and are not maintained in a polA strain, it is proposed that the chloramphenicol-promoted increase in resistance depends on the formation of multiple numbers of specific resistance episomes (called repairons in view of their role in DNA repair).  相似文献   

3.
The ultraviolet light (UV) survival curve of Escherichia coli WP10 recA trp is almost biphasic, with a greatly reduced shoulder but demonstrating a transition to a decreased slope with increasing fluences, indicating the presence in the culture of a low frequency of resistant cells. Treatment of the culture with chloramphenicol before UV exposure brought almost all of the cells to a high degree of UV resistance, by bringing them to the end of their DNA replication cycle. The survival curves of the repair-proficient E. coli WP2 trp showed a similar pattern with chloramphenicol treatment or tryptophan starvation before UV exposure, but only if protein synthesis were blocked by chloramphenicol for 60 min after UV exposure. The results suggest that when recA/lexA-regulon induction is prevented, either by the recA mutation or by inhibition of protein synthesis after UV exposure, death occurs unless the cells are in the resistant state characteristic of bacteria at the end of their DNA replication cycle. With repair-proficient bacteria treated before UV exposure with chloramphenicol, when protein synthesis is not blocked after UV exposure, a marked expansion of the shoulder occurs because of the function of another resistance-conferring mechanism. This mechanism also depends on the recA+ gene since expansion of the shoulder does not occur in recA bacteria when protein synthesis is inhibited before UV exposure.  相似文献   

4.
The biological and repair responses of Mut 8–16, an ultraviolet radiation (UV)-resistant derivative of CHO-K1, were characterized with respect to UV and to the active chemical carcinogen, benzo[a]pyrene-4,5-oxide. In comparison to the parent, the UV-survival response curve of this mutant showed a significantly larger shoulder but little or no difference in the slope of the exponential survival region. In addition, the mutant cell line demonstrated significantly larger mutation frequencies at high survival UV fluences, but smaller mutation frequencies at high survival equitoxic concentrations of the carcinogen benzo[a]pyrene-4,5-epoxide relative to the parent cell. However, these relative differences in mutation frequencies between parent and mutant appeared to decrease as survival decreased. Despite these observations there were no measurable differences in excision-repair, or in post-replication repair although the mutant appeared to show a nominal reduction (not an enhancement) of replication-repair activity following the UV exposure. These data imply there is another lesion recognition system in CHO cells whose effects on survival and mutation are best observed at low doses of carcinogen and/or radiation but which are masked at higher doses where major repair processes dominate. The dissimilar relationship of cytotoxicity to mutation induction frequency observed in UV and carcinogen treated mutant vs. parent cell lines, imply that the probabilities for lethality and mutation are independent of one another in the presence of otherwise unrepaired (residual) damage.  相似文献   

5.
When arabinose-grown Escherichia coli B/r is ultraviolet (UV) irradiated in the logarithmic phase of growth, the dose inactivation curve for both colony formation and deoxyribonucleic acid (DNA) synthesis (based on the relative rates of synthesis) is exponential in nature. When protein synthesis is inhibited before UV-irradiation, both inactivation curves have a large shoulder. Pre-irradiation inhibition of protein synthesis increases considerably the colony-forming ability of a UV-irradiated Hcr(-) and Rec(-) strain of E. coli B/r. However, with the repair-deficient strains, both the shoulder and slope of the survival curve are affected. We investigated the effect of UV irradiation on DNA synthesis in Hcr(-) bacteria and found that pre-irradiation inhibition of protein synthesis increases UV resistance of DNA replication in this strain also. The results suggest that inhibition of protein synthesis before irradiation increases UV resistance in E. coli B/r by a mechanism which is independent of both the excision and recombination repair systems.  相似文献   

6.
Using the method of two separate UV exposures the increase of UV resistance after various induction fluences in growing and resting Escherichia coli B/r Hcr+ was followed. In resting cells, the optimum induction energy fluence was found to be 30 J/m2. In exponentially growing cells testing of induction has proved to be possible only under conditions of postincubation of cells with chloramphenicol after the second fluence. Under these conditions the induction energy fluence up to the observed 50 J/m2 resulted in an increased survival.  相似文献   

7.
Spores of Clostridium botulinum 33A exhibit a sigmoidal survival curve if subjected to gamma radiation. The present investigation was concerned with two questions: (i) what is the form of an ultraviolet (UV)-survival curve and (ii) what is the combined effect of UV- and gamma radiation? The UV-survival curve was found to be of sigmoidal type with a "shoulder" width of 675 ergs/mm(2) and a D(10) (exp) of 2,950 ergs/mm(2). To test the combination effect, spores were subjected to UV doses of 225, 450, 675, and 900 ergs/mm(2) followed by a series of increasing doses of gamma rays from 200 to 2,000 krad in 200-krad steps. The gamma ray-survival curves showed that increasing UV pretreatment caused a gradual loss of the "Prodiginine" yielding straight line exponential survival curves after preirradiation with UV doses of 675 ergs/mm(2) and above. Simultaneously the D(10) value for gamma-ray irradiation was reduced, e.g. UV preirradiation with 900 ergs/mm(2) reduced the D(10) by 40%. This observation emphasizes the potential practical advantage of combining UV and gamma rays for sterilization of heat-sensitive commodities.  相似文献   

8.
Exposure of Chinese hamster cells to near-u.v. light, following the uniform incorporation of 5-bromodeoxyuridine (BrdUrd) into their DNA, resulted in cell killing that was close to exponential. An inhibitor of poly(ADP-ribose) synthesis, 3-aminobenzamide (3-ABA), enhanced the cytotoxic effect of this treatment when present for 2 h at 20 mM after light exposure. The dose modifying factor was 1.4. Under conditions that resulted in a sigmoidal survival curve (a 30 min BrdUrd pulse in S phase, followed 90 min later by light exposure) the effect of 3-ABA was to remove the shoulder of the survival curve with very little change in its final slope. Using various inhibitors of ADP-ribosyl transferase (ADPRT) the enhanced cell killing was found to correlate with the inhibitors' relative potency. Cellular NAD+, the substrate for poly(ADP-ribose) synthesis, was rapidly depleted after exposure. This depletion was largely prevented by 3-ABA; the activity of ADPRT increased with the fluence of near-u.v. light; and the concentration of cellular NAD+ decreased with exposure. ADPRT activity was maximal immediately after exposure to near u.v. light and then decayed to pre-exposure levels within 30 min (37 degrees C). The enhanced cytotoxicity of BrdUrd + near-u.v. light, when followed by 3-ABA treatment, disappeared at a rate similar to that of the decay in ADPRT activity. We conclude from these results that poly(ADP-ribose) synthesis is important for the recovery from BrdUrd photolysis damage in DNA. Because this damage and its repair are relatively specific (e.g. compared to ionizing radiation) and relatively easy to manipulate, it could serve as a model system for the study of the role of poly(ADP-ribose) in the repair of DNA damage.  相似文献   

9.
Summary The fixation of-rays induced potentially damage (PLD) caused after treatment either with-araA or in medium made hypertonic by the addition of sodium chloride was studied in plateau phase chinese hamster V79 cells. Treatment with-araA was found to affect a sector of PLD, the fixation of which specifically reduced the shoulder width of the survival curve. The effect was maximized when cell survival reached levels corresponding to an exponential line, with a slope similar to the final slope of the survival curve of untreated cells. This effect was achieved by a four hour treatment with-araA at concentrations above 150µM. Longer treatment times or incubation at higher-araA concentrations did not significantly enhance the effect. Treatment in hypertonic medium, on the other hand, enhanced cell killing in a concentration dependent (NaCl-concentration) way and the survival reached values much lower than those corresponding to an exponential line. No indication for a plateau in the effect, indicating complete fixation of the sector of PLD that reacts sensitively to this treatment, was obtained. Both the slope and the shoulder width of the survival curve were affected, the slope first being increased after short treatment times (up to 10 min), followed by a decrease in the shoulder width after longer treatment times (longer than 10 min). Lesions fixed after treatment with-araA were repaired within four hours, whereas the repair of lesions fixed after treatment in hypertonic medium (460 mM NaCl, 30 min) appeared to be biphasic, with a fast component (completed in about one hour) correlated with a decrease in the slope and a slow component (completed in four hours) correlated with restoration of the shoulder width. Based on these results, we suggest that two types of PLD may be induced in plateau phase V79 cells after exposure to-rays. One, the repair of which is completed within about one hour and which affects the slope of the survival curve, and a second, the repair of which takes place in a few hours and which specifically affects the survival curve shoulder width. The terms-PLD and-PLD are suggested for the first and second component, respectively.Comparison of the repair rates of-PLD as measured with the help of-araA and of sublethal damage as measured in split-dose experiments indicated that these two cellular repair processes have very similar kinetics when measured under the same experimental conditions. Furthermore, the rate was identical at which the shoulder of the survival curve reappeared (shoulder width was the only parameter of the survival curve affected in this type of experiment) in the time interval between either a conditioning dose of-rays and subsequent graded doses or between irradiation and treatment with-araA. Based on these results it is suggested that-PLD and sublethal damage may have a common molecular base.This work was supported by PHS-grants number CA 33951 and CA 39938 awarded by NCI, DHHS  相似文献   

10.
Cell survival and recovery after gamma irradiation were investigated in a Chinese hamster ovary cell line (AA8) and in two radiosensitive clones (EM9 and NM2) derived from it. When analyzed by the multitarget and linear-quadratic equations, the dose-response curves for survival of both EM9 and NM2 cells, compared with AA8 cells, were characterized by a decreased magnitude of the shoulder or single-hit region (as reflected by Dq or alpha, respectively) but no difference in the terminal slope or double-hit region (as reflected by DO or beta, respectively). Recovery from sublethal damage (SLD) and potentially lethal damage (PLD) was measured in the three cell lines to examine the relationship between the shoulder width of the survival curve and the magnitude of cellular recovery. NM2 cells exhibited a reduced shoulder on their survival curve and a reduced capacity for SLD recovery, compared with AA8 cells, after equitoxic doses of radiation. EM9 cells, which also had a reduced shoulder on their survival curve, displayed the same rate and extent of recovery as AA8 cells for both SLD and PLD. PLD recovery, as assayed in fed plateau-phase NM2 cells by delayed plating, occurred with slower initial kinetics but to the same final extent as that in AA8 cells, resulting in modification of both the shoulder and the slope of the survival curve. However, PLD recovery, as assayed in log-phase NM2 cells by postirradiation treatment with hypertonic salt, was normal and affected predominantly the slope of the survival curve. These data demonstrate that although both SLD and PLD recovery play a role in determining cell survival, cell-survival curve parameters may not always be useful in predicting cellular recovery capacity.  相似文献   

11.
Strain CV of Serratia marcescens mutates by UV with high frequency to 3 groups of mutants (w, h, s) differing in colour from the red wild-type. The mutational dose—response curve has a curvature corresponding to about 3 hits. It reaches a peak and declines at high doses. Inactivation curves have a broad shoulder and mostly, but not always, a break to a lesser slope at UV doses near the peak of mutations. Photoreactivation (PR) gives a dose reduction of about 2 for both inactivation and mutation including the break and peak. The dose curve with PR for w-mutations shows 1 hit-, and the other types 2-hit curvature leading to a change of mutation spectrum with dose due to PR. The UV-sensitive mutant uvs21 of CV has a survival curve with a small shoulder and a long upward concavity without a break, and the mutation curve is of the one-hit type without a peak and decline. PR gives a dose reduction of 12 for inactivation and of 7.5 for mutation. The 3-hit mutation curve of CV is interpreted by assuming that 2 further hits are required to protect the 1-hit pre-mutations from being abolished by the repair lacking in uvs21. UV induction of SOS repair cannot be responsible for the 3-hit curvature because UVR of phages and induction of prophage are already saturated at rather low doses. High-dose decline (HDD) of mutations in CV is probably caused neiher by a fraction of UV-resistant cells in the population nor by post-mutational selective inhibition of growth of mutants by UV-inactivated neighbour cells. As HDD is not observed in uvs21, possibly the non-mutagenic repair lacking from uvs21 interferes with the mutation finishing processes at high doses in the repair-proficient strain CV. However, UV induction of this interference cannot be a one-hit process but requires a very large number of hits.  相似文献   

12.
Thermal Death of a Hydrocarbon Bacterium in a Nonaqueous Fluid   总被引:4,自引:0,他引:4       下载免费PDF全文
A hydrocarbon-utilizing Brevibacterium which grew into the oil phase of an oil-water system was tested for survival at elevated temperature. Cells suspended in oil and cells that had been resuspended in aqueous solution were tested by placing 1-ml samples of the cell suspension in small test tubes immersed in a controlled-temperature water bath. The resultant survival curves in oil consisted of two parts, a flat shoulder obtained in the first half of the heating period, followed by a break indicating rapid die-off. The break in the curves occurred after 50% of the cells were killed. This occurred at exposures of 25, 15, and 8 min for 78, 88.6, and 96.2 C, respectively. The survival curve for 63.5 C in the aqueous solution was a rapid, exponential die-off. The actual increase in survival of the organism in oil is reflected by the length of the shoulder portion. The shoulder occurs only in an oil medium and is increased by decreasing temperature and increasing age of the culture.  相似文献   

13.
The in vitro response of L1A2 cells to a single exposure to one temperature and to step-down heating was investigated. Single heating consisted of heating for a specified time at a constant temperature in the range 38.0-45.0 degrees C, whereas step-down heating involved a pretreatment of either 45.0 degrees C for 10 min or 42.0 degrees C for 90 min. The pretreatments were adjusted to give the same survival level. The survival curves for single heating had an initial shoulder followed by an exponential region, whereas for step-down heating they were strictly exponential and had no shoulder. The time-temperature relationship for cells exposed to single heating showed a biphasic Arrhenius curve with a downward inflection at 40.5 degrees C. Biphasic Arrhenius curves were also observed for step-down heating, but both the 45 degrees C/10 min and the 42 degrees C/90 min pretreatment showed an upward inflection that broke at 42.5 degrees C and 40.5 degrees C, respectively. The downward inflection on the Arrhenius curve for single heating has been attributed to thermotolerance development and the effect of step-down heating to a temporary inhibition of thermotolerance development. However, the present shape of the Arrhenius curves for step-down heating cannot be explained by inhibition of thermotolerance. It is therefore reasonable to assume that step-down heating is more than just the inhibition of thermotolerance, and that step-down heating and thermotolerance are distinct phenomena which act independently.  相似文献   

14.
The UV survival curves of different strains of myxobacteria exhibited shoulders; in the case of Polyangium luteum, an unusual double shoulder appeared. Repair inhibitors like acriflavine, caffeine, and coumarin reduced the survival of UV-irradiated cells if the drugs were incorporated in the post-irradiation plating medium. The shoulders were reduced, but the final inactivation slopes were not affected by the repair inhibitors. Those strains that were resistant to UV were also more resistant to being killed by nitrosoguanidine. A variety of drug-resistant mutants occurred. The spontaneous mutation frequencies to drug resistance varied with the drug and the strain used. Drug-resistant mutants were inducible by UV irradiation and nitrosoguanidine. The UV mutability of Myxococcus xanthus was high compared to Cystobacter sp. However, the nitrosoguanidine mutability of M. xanthus was low compared to the other strains.  相似文献   

15.
Deprivation of amino acids required for growth or treatment with chloramphenicol or puromycin after irradiation reduced the survival of Rec(+) cells of Escherichia coli K-12 which had been exposed to either ultraviolet (UV) or X radiation. In contrast, these treatments caused little or no reduction in the survival of irradiated recA or recB mutants. The effect of chloramphenicol on the survival of X-irradiated cells was correlated with an inhibition of repair of single-strand breaks in irradiated deoxyribonucleic acid (DNA), previously shown to be controlled by recA and recB. In UV-irradiated cells no effect of chloramphenicol was detected on the repair of single-strand discontinuities in DNA replicated from UV-damaged templates, a process controlled by recA but not by recB. From this we concluded that inhibiting protein synthesis in UV or X-irradiated cells may interfere with some biochemical step in repair dependent upon the recB gene. When irradiated Rec(+) cells were cultured for a sufficient period of time in minimal growth medium before chloramphenicol treatment their survival was no longer decreased by the drug. After X irradiation this occurred in less than one generation time of the unirradiated control cells. After UV irradiation it occurred more slowly and was only complete after several generation times of the unirradiated controls. These observations indicated that replication of the entire irradiated genome was probably not required for rec-dependent repair of X-irradiated cells, although it might be required for rec-dependent repair of UV-irradiated cells.  相似文献   

16.
Repeated lyophilization of Deinococcus proteolyticus, Micrococcus luteus and Escherichia coli cells results in a successive decrease of their survival. The survival curve is exponential with E. coli and M. luteus, and sigmoidal with a broad shoulder with D. proteolyticus both after repeated lyophilization and after UV- or gamma-irradiation. When cells were subjected to gamma-irradiation after a 20-fold freeze-drying, the corresponding survival curve became exponential without the shoulder. Hence we assume that irradiation and repeated lyophilization afflict the same cellular structures and/or functions.  相似文献   

17.
3 wild-type strains of E. coli, namely K12 AB2497, B/r WP2 and 15 555-7v proficient in excision and post-replication repair, differ markedly in their UV resistance. To elucidate this difference, the influence was investigated of induction by application of inducing fluence (IF) before lethal fluence (LF) on repair processes after LF. In cells distinguished by low UV resistance (E. coli 15 555-7; E. coli B/r WP2), dimer excision was less complete in cultures irradiated with IF + LF than in cultures irradiated with LF only. The highly resistant E. coli K12 AB2497 performed complete excision both after IF + LF or after LF alone. All 3 types of cell survived better after IF + LF than after LF only. Because, in most strains so far investigated, the application of IF reduced dimer excision and increased survival, dimer excision per se does not appear important for survival.We conclude that the rate and completeness of dimer excision can serve as a measure of efficiency of the excision system whose action is necessary for repair of another lesion. Cells of all investigated strains could not resume DNA replication and died progressively when irradiated with LF and post-incubated with chloramphenicol (LF CAP+). Thus, it appears that inducible proteins are necessary for repair in all wild-type E. coli cells give with potentially lethal doses of UV irradiation.  相似文献   

18.
Summary Using a model of double-UV-irradiation with inducing1 (non-lethal) and lethal fluences2 we have studied involvement of UV-inducible functions in post-UV-irradiation restoration processes and survival of Escherichia coli B/r thy - thy - Hcr+. Cells irradiated with both inducing and lethal fluences differed from cells irradiated with lethal fluence in the following respects: They were more UV resistant; they did not die during postincubation with chloramphenicol3; they exhibited a significant reduction in dimer excision; they were able to resume DNA replication and produce normal-sized DNA molecules in the presence of chloramphenicol. Since induction was provoked in cell prestarved for amino acids it was not associated with damage to points active in replication. However, the inducible product was more important for repair of replicating than non-replicating cells. The data indicate that protein necessary for resumption of DNA synthesis after UV is not constitutive but inducible.Abbreviations 1IF inducing fluence - 2IF lethal fluence - 3CAP chloramphenicol  相似文献   

19.
The survival of UV-irradiated Simian virus 40 (SV40) in CV-1P African green monkey kidney cells treated with (+/-)7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BP-diol epoxide I) was studied. Enhanced survival of UV damaged SV40 was detected when CV-1P cells were treated with dose levels of BP-diol epoxide I corresponding to the exponential portion (0.33-1.11 microM) of a CV-1P cell survival curve. Dose levels of BP-diol epoxide I corresponding to the shoulder region (less than or equal to 0.16 microM) of a CV-1P survival curve did not induce viral reactivation. The shoulder region concentrations of BP-diol epoxide I selectively inhibited DNA initiation while the concentrations on the exponential portion of the curve preferentially inhibited DNA elongation. It was shown in a time course of enhanced viral survival at 0.66 microM BP-diol epoxide I that the reactivation response was fully induced by 24 h. In conclusion, the viral reactivation response was associated with concentrations of BP-diol epoxide I which induced lethal damage and preferentially inhibited DNA elongation.  相似文献   

20.
V79 cells have been exposed to X-rays or 238Pu alpha-particles or to X-rays following priming alpha-particle doses of 0.5, 2 or 2.5 Gy. The survival curve for exposure to alpha-particles was exponential with a D0 of 0.89 Gy. Following exposure to priming alpha-particle doses the resulting X-ray survival curves had the same slope as the single dose X-ray curve, but a reduced shoulder. For alpha-particle priming doses of 0.5 and 2 Gy this reduction was the same as for the same X-ray doses. 2.5 Gy alpha-particles reduced the subsequent X-ray curve Dq to almost zero. alpha-particles do cause damage capable of interacting with X-ray damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号