首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is little information on the mechanisms responsible for muscle recovery following a catabolic condition. To address this point, we reloaded unweighted animals and investigated protein turnover during recovery from this highly catabolic state and the role of proteolysis in the reorganization of the soleus muscle. During early recovery (18 h of reloading) both muscle protein synthesis and breakdown were elevated (+65%, P<0.001 and +22%, P<0.05, respectively). However, only the activation of non-lysosomal and Ca(2+)-independent proteolysis was responsible for increased protein breakdown. Accordingly, mRNA levels for ubiquitin and 20S proteasome subunits C8 and C9 were markedly elevated (from +89 to +325%, P<0.03) and actively transcribed as shown by the analysis of polyribosomal profiles. In contrast, both cathepsin D and 14-kDa-ubiquitin conjugating enzyme E2 mRNA levels decreased, suggesting that the expression of such genes is an early marker of reversed muscle wasting. Following 7 days of reloading, protein synthesis was still elevated and there was no detectable change in protein breakdown rates. Accordingly, mRNA levels for all the proteolytic components tested were back to control values even though an accumulation of high molecular weight ubiquitin conjugates was still detectable. This suggests that soleus muscle remodeling was still going on. Taken together, our observations suggest that enhanced protein synthesis and breakdown are both necessary to recover from muscle atrophy and result in catch-up growth. The observed non-coordinate regulation of proteolytic systems is presumably required to target specific classes of substrates (atrophy-specific protein isoforms, damaged proteins) for replacement and/or elimination.  相似文献   

2.
The hypothesis was tested that mechanical loading, induced by hindlimb suspension and subsequent reloading, affects expression of the basement membrane components tenascin-C and fibronectin in the belly portion of rat soleus muscle. One day of reloading, but not the previous 14 days of hindlimb suspension, led to ectopic accumulation of tenascin-C and an increase of fibronectin in the endomysium of a proportion (8 and 15%) of muscle fibers. Large increases of tenascin-C (40-fold) and fibronectin (7-fold) mRNA within 1 day of reloading indicates the involvement of pretranslational mechanisms in tenascin-C and fibronectin accumulation. The endomysial accumulation of tenascin-C was maintained up to 14 days of reloading and was strongly associated with centrally nucleated fibers. The observations demonstrate that an unaccustomed increase of rat soleus muscle loading causes modification of the basement membrane of damaged muscle fibers through ectopic endomysial expression of tenascin-C.  相似文献   

3.
The present study involved a global analysis of genes whose expression was modified in rat soleus muscle atrophied after hindlimb suspension (HS). HS muscle unloading is a common model for muscle disuse that especially affects antigravity slow-twitch muscles such as the soleus muscle. A cDNA cloning strategy, based on suppression subtractive hybridization technology, led to the construction of two normalized soleus muscle cDNA libraries that were subtracted in opposite directions, i.e., atrophied soleus muscle cDNAs subtracted by control cDNAs and vice versa. Differential screening of the two libraries revealed 34 genes with altered expression in HS soleus muscle, including 11 novel cDNAs, in addition to the 2X and 2B myosin heavy chain genes expressed only in soleus muscles after HS. Gene up- and down-regulations were quantified by reverse Northern blot and classical Northern blot analysis. The 25 genes with known functions fell into seven important functional categories. The homogeneity of gene alterations within each category gave several clues for unraveling the interplay of cellular events implied in the muscle atrophy phenotype. In particular, our results indicate that modulations in slow- and fast-twitch-muscle component balance, the protein synthesis/secretion pathway, and the extracellular matrix/cytoskeleton axis are likely to be key molecular mechanisms of muscle atrophy. In addition, the cloning of novel cDNAs underlined the efficiency of the chosen technical approach and gave novel possibilities to further decipher the molecular mechanisms of muscle atrophy.  相似文献   

4.
5.
6.
Little is known about the mechanisms responsible for the adaptation and changes in the capillary network of hindlimb unweighting (HU)-induced atrophied skeletal muscle, especially the coupling between functional and structural alterations of intercapillary anastomoses and tortuosity of capillaries. We hypothesized that muscle atrophy by HU leads to the apoptotic regression of the capillaries and intercapillary anastomoses with their functional alteration in hemodynamics. To clarify the three-dimensional architecture of the capillary network, contrast medium-injected rat soleus muscles were visualized clearly using a confocal laser scanning microscope, and sections were stained by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) and with anti-von Willebrand factor. In vivo, the red blood cell velocity of soleus muscle capillaries were determined with a pencil-lens intravital microscope brought into direct contact with the soleus surface. After HU, the total muscle mass, myofibril protein mass, and slow-type myosin heavy chain content were significantly lower. The number of capillaries paralleling muscle fiber and red blood cells velocity were higher in atrophied soleus. However, the mean capillary volume and capillary luminal diameter were significantly smaller after HU than in the age-matched control group. In addition, we found that the number of anastomoses and the tortuosity were significantly lower and TUNEL-positive endothelial cells were observed in atrophied soleus muscles, especially the anastomoses and/or tortuous capillaries. These results indicate that muscle atrophy by HU generates structural alterations in the capillary network, and apoptosis appears to occur in the endothelial cell of the muscle capillaries.  相似文献   

7.
Protein kinase B [PKB, also known as Akt (PKB/Akt)] and calcineurin (CaN) are postulated to play important roles in integrating intracellular signaling in skeletal muscle in response to disuse and increased muscle loading. These experiments investigated changes in signal transduction of the downstream pathways of PKB/Akt and CaN during recovery following disuse-induced muscle atrophy. A 10-day period of hindlimb unloading (HLU) via tail suspension (male rats) was used to produce soleus muscle atrophy. Muscle recovery was achieved by returning animals to normal ambulation for 3-10 days. HLU resulted in significant muscle atrophy and a slow-to-fast fiber transition as revealed by appearance of type IId/x and IIb myosin heavy chain (MHC) isoforms. Muscle mass in HLU animals recovered to control (Con) levels after 10 days of reloading, but the fast-to-slow shift in muscle MHC was incomplete, as indicated by the continued presence of type IId/x MHC. Ten days of HLU resulted in a significant decrease (-43%) in muscle levels of phosphorylated PKB/Akt. In contrast, muscle levels of phosphorylated PKB/Akt were greater (+56%) in HLU than in Con animals early after the onset of reloading (3 days). Soleus levels of phosphorylated p70S6K were significantly higher (+26%) in HLU animals after 3 days of muscle reloading. Muscle levels of phosphorylated PKB/Akt and phosphorylated p70S6K returned to Con levels by day 10 of recovery. Moreover, muscle CaN levels were significantly higher than Con levels after 10 days of muscle reloading. These findings are consistent with the hypothesis that PKB/Akt and its downstream mediators are active in the regrowth of muscle mass during the early periods of recovery from muscle atrophy. Our data support the concept that CaN is involved in muscle remodeling during the later phases of recovery from disuse muscle atrophy.  相似文献   

8.
The effect of acutely reduced weight bearing (unloading) on the in vitro uptake of 2-[1,2-3H]deoxy-D-glucose was studied in the soleus muscle by tail casting and suspending rats. After just 4 h, the uptake of 2-deoxy-D-glucose fell (-19%, P less than 0.01) and declined further after an additional 20 h of unloading. This diminution at 24 h was associated with slower oxidation of [14C]glucose and incorporation of [14C]glucose into glycogen. Unlike after 1 day, at 3 days of unloading basal uptake of 2-deoxy-D-glucose did not differ from control. Reloading of the soleus after 1 or 3 days of unloading increased uptake of 2-deoxy-D-glucose above control and returned it to normal within 6 h and 4 days, respectively. These effects of unloading and recovery were caused by local changes in the soleus, because the extensor digitorum longus from the same hindlimbs did not display any alterations in uptake of 2-deoxy-D-glucose or metabolism of glucose. This study demonstrates that alterations in contractile activity, brought about by unloading or recovery from unloading, can influence the regulation of glucose transport in the soleus.  相似文献   

9.
It has been shown that, after prolonged disuse, the accumulation of muscle mass and the recovery of soleus fiber volume are caused by water accumulation rather than protein synthesis intensification. At the same time, the expression rate of the main markers of the activity of ubiquitin-proteasome system remained increased on the 3rd day of reloading and decreased to the control by the 7th day. Both the quantity of the insulin-like growth factor 1 and the number of satellite cells fused with muscle fibers and of myonuclei began to increase only on the 7th day of reloading. The data obtained evidenced a significant inertness of the postural muscle during its adaptation to the load (normal gravity) after prolonged disuse.  相似文献   

10.
Chronic reduction of gravitational load in the rear limbs of rats to simulate the influence of near-zero gravity in skeletal muscles has been shown previously to elicit atrophy in the soleus muscle. Use of this model by the present investigation indicates that soleus atrophy was characterized by a decline in the number of fibers in groups that contained the slow isoenzyme of myosin and which were classified as type I from intensity of staining to myofibrillar actomyosin adenosinetriphosphatase (ATPase) and to NADH tetrazolium reductase. Furthermore total fiber number was not changed, whereas fibers containing the intermediate isoenzyme and those classified as type IIa increased. There results could be explained by either a change in the composition within existing fibers or a simultaneous loss of slow fibers and de novo synthesis of intermediate and fast fibers. Evidence for transformation included an absence of embryonic or neonatal myosin in muscles from suspended rats and the constant fiber number that was unchanged by 4 wk of suspension. Furthermore although fiber areas of both groups of type I and IIa fibers declined during suspension, variability of the fiber areas within each group did not increase.  相似文献   

11.
The objective of this study was to determine whether altered intracellular Ca(2+) handling contributes to the specific force loss in the soleus muscle after unloading and/or subsequent reloading of mouse hindlimbs. Three groups of female ICR mice were studied: 1) unloaded mice (n = 11) that were hindlimb suspended for 14 days, 2) reloaded mice (n = 10) that were returned to their cages for 1 day after 14 days of hindlimb suspension, and 3) control mice (n = 10) that had normal cage activity. Maximum isometric tetanic force (P(o)) was determined in the soleus muscle from the left hindlimb, and resting free cytosolic Ca(2+) concentration ([Ca(2+)](i)), tetanic [Ca(2+)](i), and 4-chloro-m-cresol-induced [Ca(2+)](i) were measured in the contralateral soleus muscle by confocal laser scanning microscopy. Unloading and reloading increased resting [Ca(2+)](i) above control by 36% and 24%, respectively. Although unloading reduced P(o) and specific force by 58% and 24%, respectively, compared with control mice, there was no difference in tetanic [Ca(2+)](i). P(o), specific force, and tetanic [Ca(2+)](i) were reduced by 58%, 23%, and 23%, respectively, in the reloaded animals compared with control mice; however, tetanic [Ca(2+)](i) was not different between unloaded and reloaded mice. These data indicate that although hindlimb suspension results in disturbed intracellular Ca(2+) homeostasis, changes in tetanic [Ca(2+)](i) do not contribute to force deficits. Compared with unloading, 24 h of physiological reloading in the mouse do not result in further changes in maximal strength or tetanic [Ca(2+)](i).  相似文献   

12.
The time course of glycogen changes in soleus muscle recovering from 3 days of nonweight bearing by hindlimb suspension was investigated. Within 15 min and up to 2 h, muscle glycogen decreased. Coincidentally, muscle glucose 6-phosphate and the fractional activity of glycogen phosphorylase, measured at the fresh muscle concentrations of AMP, increased. Increased fractional activity of glycogen synthase during this time was likely the result of greater glucose 6-phosphate and decreased glycogen. From 2 to 4 h, when the synthase activity remained elevated and the phosphorylase activity declined, glycogen levels increased (glycogen supercompensation). A further increase of glycogen up to 24 h did not correlate with the enzyme activities. Between 24 and 72 h, glycogen decreased to control values, possibly initiated by high phosphorylase activity at 24 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that reloading transiently uncoupled glycogen control of this enzyme. These data suggest that the activities of glycogen synthase and phosphorylase, when measured at physiological effector levels, likely provide the closest approximation to the actual enzyme activities in vivo. Measurements made in this way effectively explained the majority of the changes in the soleus glycogen content during recovery from nonweight bearing.  相似文献   

13.
14.
Responses of the properties of connectin molecules in the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus muscles of rats to 3 days of unloading with or without 3-day reloading were investigated. The wet weight (relative to body wt) of Sol, not of extensor digitorum longus, in the unloaded group was significantly less than in the age-matched control (P < 0.05). Immunoelectron microscopic analyses showed that a monoclonal antibody against connectin (SM1) bound to the I-band region close to the edge of the A band at resting length and moved reversibly away from the Z line as the muscle fibers were stretched. In Sol, the displacement of the SM1-bound dense spots in response to stretching decreased after hindlimb suspension. There were no changes in the molecular weights and the percent distributions of alpha- and beta-connectin in both muscles after hindlimb suspension. A significant increment of percent beta-connectin in Sol was observed after 3 days of reloading after hindlimb suspension (P < 0.05). It is suggested that the elasticity of connectin filaments in the I-band region of the atrophied Sol fibers was reduced relative to that of the control fibers. The lack of the elasticity in atrophied muscle fibers may cause a decrease in contractile function.  相似文献   

15.
16.
In female Wistar rats (n = 316) under pentobarbital sodium anesthesia, the soleus muscle was autografted with its nerve reimplanted. One purpose was to characterize the chronological development of graft innervation and recruitment during locomotion. Furthermore, we tested hypotheses regarding the efficacy of run conditioning of different intensities, durations, and postgrafting initiation times to alter mass and pyruvate-malate oxidation capacity of grafts. Choline acetyltransferase activity of grafts increased from 10% of control value at 7 days postgrafting to 55 and 100% at days 28 and 56, respectively. Running-induced glycogen depletion occurred in grafts; this is consistent with graft recruitment during locomotion. There was a threshold of conditioning intensity below which no improvements occurred and above which there were improvements. Spring (50 m/min) and endurance (30 m/min) conditioning of a duration of at least 28 days that was initiated at 28 or 56 days postgrafting increased mass of grafts by 30% compared with grafts from nonconditioned rats. Easy conditioning (15 m/min) had no effect on graft mass. Changes in graft total protein content paralleled those of mass. Oxidation capacity of grafts increased significantly with some conditioning protocols, but not to the same extent as mass. The exercise-induced adaptations should improve graft function in the host organism.  相似文献   

17.
The myosin isozymes present in the developing rat soleus muscle from 1 week to 6 weeks after birth were investigated using biochemical and immunological methods. Electrophoresis of native myosin reveals that adult slow myosin is present in the soleus as early as 1 week after birth. At this time, embryonic and neonatal myosin can also be demonstrated. Using an immunotransfer technique, the presence of slow myosin heavy chain can be demonstrated at all time points examined whereas neonatal myosin heavy chain diminishes in quantity between 2 and 3 weeks, and is undetectable in the adult soleus. Specific polyclonal antibodies were prepared to embryonic, neonatal, and adult fast and slow myosins. Immunocytochemistry reveals a cellular heterogeneity at all stages examined. Different combinations of myosin isozymes can be found in the soleus fibers depending on the stage of development; these results suggest therefore that myosin isozyme transitions are occurring. Approximately half the fibers contain embryonic and slow myosin at 1 week after birth; these fibers subsequently contain only slow myosin. A second group of fibers contains embryonic and neonatal myosin at 1 week and most of them subsequently accumulate adult fast myosin. A portion of this latter group begins to acquire slow myosin from 4 weeks of age. These data are interpreted to suggest that a preprogrammed sequence of myosin isozymes is embryonic----neonatal----adult fast. At any time during development of an individual fiber, induction of slow myosin accumulation and repression of other types can occur.  相似文献   

18.
19.
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.  相似文献   

20.
In order to study the development of the m. soleus muscle fibers during postnatal ontogenesis in the rat, methods for revealing ATPase activity of myosin at preincubation in acidic and alcaline medium and lactate dehydrogenase and succinate dehydrogenase activity have been used. The m. soleus undergoes three stages of development. The first stage--from birth of the animal up to the 7th day. During this time the muscle is homogenous. The second stage is characterized by appearance of certain histochemical differences in the muscle fibers. The muscle becomes mixed. During the whole period (in males from the 7th up to the 175th, and in females from the 7th up to the 60th-70th day) transferring of glycolytic fibers into oxidative-glycolytic ones with their successive transformation into oxidative fibers is observed. During the third stage (in males older than 175, and in females older than 60-70 days) the m. soleus converts from the mixed into the homogenous one consisting of oxidative fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号