首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rett syndrome (RTT) is one of the most common genetic diseases responsible for a progressive disabling neurodevelopmental disorder. Mutations in the MeCP2 gene were identified in the great majority of RTT patients. MeCP2 protein binds to methylated DNA and produces changes in chromatin structure. This is a key event in regulation of gene expression. It has been suggested that MeCP2 might be important for neuronal development. Moreover, the frequent occurrence of osteoporosis and scoliosis in RTT patients suggests impaired bone formation and/or remodeling. Mesenchymal stem cells (MSCs) can differentiate as mesodermal cells such as bone, cartilage cells, and adipocytes. MSCs have been shown to possess great somatic plasticity; in fact, they can differentiate as neurons and astrocytes. We studied RTT patients' MSCs because they are progenitors of osteocytes, and it has been suggested that RTT patients' osteogenesis could be impaired. Moreover, MSCs might represent a useful model for the study of neurogenesis. MSCs from RTT patient showed precocious signs of senescence in a comparison with the MSCs of healthy-patient control groups. This was in agreement with the reduced gene-expression in the control of stem cell self-renewal and upregulation of lineage specific genes, such as those involved in osteogenesis and neural development. Control groups enabled us to observe a lower degree of apoptosis in RTT patient cells. This means that aberrant stem/progenitor cells, instead of being eliminated, can survive and become senescent. Our research provides a new insight into RTT syndrome. Senescence phenomena could be involved in triggering RTT syndrome-associated diseases.  相似文献   

2.
3.
Autism spectrum disorders such as Rett syndrome (RTT) have been hypothesized to arise from defects in experience-dependent synapse maturation. RTT is caused by mutations in MECP2, a nuclear protein that becomes phosphorylated at S421 in response to neuronal activation. We show here that disruption of MeCP2 S421 phosphorylation in?vivo results in defects in synapse development and behavior, implicating activity-dependent regulation of MeCP2 in brain development and RTT. We investigated the mechanism by which S421 phosphorylation regulates MeCP2 function and show by chromatin immunoprecipitation-sequencing that this modification occurs on MeCP2 bound across the genome. The phosphorylation of MeCP2 S421 appears not to regulate the expression of specific genes; rather, MeCP2 functions as a histone-like factor whose phosphorylation may facilitate a genome-wide response of chromatin to neuronal activity during nervous system development. We propose that RTT results in part from a loss of this experience-dependent chromatin remodeling.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
杨文旭  潘虹 《遗传》2014,36(7):625-630
Rett综合征(Rett syndrome, RTT)是一种X连锁的神经发育障碍性遗传病, 是导致女性严重智力障碍的主要原因之一。编码甲基化CpG结合蛋白2(Methyl-CpG-binding protein 2, MeCP2)基因突变是RTT主要的遗传病理学改变, MeCP2作为转录抑制因子调控基因表达。在RTT发病机制中, 由于缺乏MeCP2与甲基化DNA的正确结合, 阻碍了它对下游靶基因表达的正常调控, 最终导致脑功能障碍。目前, 对MeCP2在脑发育过程中的作用以及如何导致RTT的发生, 其机制尚不清楚。文章从MECP2基因和MeCP2蛋白两个方面, 对基因结构、蛋白质功能以及在分子水平上的调控机制进行了综述, 以期为RTT的发病机制研究提供新思路。  相似文献   

18.
19.
20.
The story of Rett syndrome: from clinic to neurobiology   总被引:9,自引:0,他引:9  
Chahrour M  Zoghbi HY 《Neuron》2007,56(3):422-437
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号