首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piao S  Song YL  Kim JH  Park SY  Park JW  Lee BL  Oh BH  Ha NC 《The EMBO journal》2005,24(24):4404-4414
Clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascades in various biological processes, especially in embryonic development and the innate immune responses of invertebrates. They consist of a chymotrypsin-like SP domain and one or two clip domains at the N-terminus. Prophenoloxidase-activating factor (PPAF)-II, which belongs to the noncatalytic clip-domain SP family, is indispensable for the generation of the active phenoloxidase leading to melanization, a major defense mechanism of insects. Here, the crystal structure of PPAF-II reveals that the clip domain adopts a novel fold containing a central cleft, which is distinct from the structures of defensins with a similar arrangement of cysteine residues. Ensuing studies demonstrated that PPAF-II forms a homo-oligomer upon cleavage by the upstream protease and that the clip domain of PPAF-II functions as a module for binding phenoloxidase through the central cleft, while the clip domain of a catalytically active easter-type SP plays an essential role in the rapid activation of its protease domain.  相似文献   

2.
Api SI and Api SII are serine proteases of the honeybee venom containing allergenic determinants. Each protease consists of two structural modules: an N-terminal CUB (Api SI) or a clip domain (Api SII) and a C-terminal serine protease-like (SPL) domain. Both domains are connected with a linker peptide. The knowledge about the structure and function of Api SI and Api SII is limited mainly to their amino acid sequences. We constructed 3-D models of the two proteases using their amino acid sequences and crystallographic coordinates of related proteins. The models of the SPL domains were built using the structure of the prophenoloxidase-activating factor (PPAF)-II as a template. For modelling of the Api SI CUB domain the coordinates of porcine spermadhesin PSP-I were used. The models revealed the catalytic and substrate-binding sites and the negatively charged residue responsible for the trypsin-like activity. IgE-binding and antigenic sites in the two allergens were predicted using the models and programs based on the structure of known epitopes. Api SI and Api SII show structural and functional similarity to the members of the PPAF-II family. Most probably, they are part of the defence system of Apis mellifera.  相似文献   

3.
4.
The three-dimensional structure of the fungal serine protease proteinase K has been determined at 3.3 A resolution by single crystal X-ray diffraction analysis. The enzyme crystallizes in the tetragonal space group P4(3)2(1)2 with cell constants a = b = 68.3 A, c = 108.5 A. The asymmetric unit consists of one monomer of 27 000 daltons mol. wt., approximately 50% higher than the so far assumed value of 18 500 daltons. The main chain fold of proteinase K shows a high degree of tertiary homology with the corresponding bacterial subtilisin BPN'. Proteinase K is the second enzyme in this family of serine proteases to be studied by X-ray diffraction, thus confirming the existence of two unrelated families of serine proteases in pro-and eukaryotes.  相似文献   

5.
6.
A family of serine proteases (SPs) mediates the proteolytic cascades of embryonic development and immune response in invertebrates. These proteases, called easter-type SPs, consist of clip and chymotrypsin-like SP domains. The SP domain of easter-type proteases differs from those of typical SPs in its primary structure. Herein, we report the first crystal structure of the SP domain of easter-type proteases, presented as that of prophenoloxidase activating factor (PPAF)-I in zymogen form. This structure reveals several important structural features including a bound calcium ion, an additional loop with a unique disulfide linkage, a canyon-like deep active site, and an exposed activation loop. We subsequently show the role of the bound calcium and the proteolytic susceptibility of the activation loop, which occurs in a clip domain-independent manner. Based on biochemical study in the presence of heparin, we suggest that PPAF-III, highly homologous to PPAF-I, contains a surface patch that is responsible for enhancing the catalytic activity through interaction with a nonsubstrate region of a target protein. These results provide insights into an activation mechanism of easter-type proteases in proteolytic cascades, in comparison with the well studied blood coagulation enzymes in mammals.  相似文献   

7.
Bovine acidic seminal fluid protein (aSFP) is a 1.29 kDa polypeptide of the spermadhesin family built by a single CUB domain architecture. The CUB domain is an extracellular module present in 16 functionally diverse proteins. To determine the three-dimensional structure of aSFP, the protein was crystallized at 21 degrees C by vapor diffusion in hanging drops, using ammonium sulfate, pH 4.7, and polyethyleneglycol 4,000 as precipitants, containing 10% dioxane to avoid the formation of clustered crystals. Elongated prismatic crystals with maximal size of 0.6 x 0.3 x 0.2 mm3 diffract to beyond 1.9 A resolution and belong to space group P2(1)2(1)2(1), with cell parameters a = 52.4 A, b = 41.5 A, c = 48.2 A. There is one aSFP molecule per asymmetric unit, which corresponds to a crystal volume per unit molecular mass of 2.04 A3/Da, and analytical ultracentrifugation analysis show that aSFP is a monomeric protein.  相似文献   

8.
Grass is a clip domain serine protease (SP) involved in a proteolytic cascade triggering the Toll pathway activation of Drosophila during an immune response. Epistasic studies position it downstream of the apical protease ModSP and upstream of the terminal protease Spaetzle-processing enzyme. Here, we report the crystal structure of Grass zymogen. We found that Grass displays a rather deep active site cleft comparable with that of proteases of coagulation and complement cascades. A key distinctive feature is the presence of an additional loop (75-loop) in the proximity of the activation site localized on a protruding loop. All biochemical attempts to hydrolyze the activation site of Grass failed, strongly suggesting restricted access to this region. The 75-loop is thus proposed to constitute an original mechanism to prevent spontaneous activation. A comparison of Grass with clip serine proteases of known function involved in analogous proteolytic cascades allowed us to define two groups, according to the presence of the 75-loop and the conformation of the clip domain. One group (devoid of the 75-loop) contains penultimate proteases whereas the other contains terminal proteases. Using this classification, Grass appears to be a terminal protease. This result is evaluated according to the genetic data documenting Grass function.  相似文献   

9.
Subtilisin GX, a serine protease from Bacillus species GX6644, has been crystallized by the vapor diffusion method using ammonium sulfate as the precipitant. The space group is P212121 with a = 38.4 A, b = 70.3 A, c = 73.5 A, and one molecule in the asymmetric unit. The crystals diffract to beyond 2.0-A resolution and are suitable for a high resolution three-dimensional structure determination. All x-ray data used in the preliminary crystallographic study were collected with an electronic area detector.  相似文献   

10.
11.
Two types of serine proteases and a serine protease homologue cDNAs were isolated from Hyphantria cunea larvae induced immune response due to an injection of a microorganism through RT‐PCR and cDNA library screening, and their characteristics were examined. The isolated cDNAs are composed 2.1 kb, 2.2 kb, and 2.5 kb nucleotide each, which encoded 388, 390, 580 amino acid residues, and were designated as HcPE‐1, HcPE‐2 and HcPE‐3, respectively. They were revealed as serine proteases or a serine protease homologue with the clip domain through a database search. The deduced amino acid sequence comparison showed high homology of 72‐78% among them. Six Cys residues of the N‐terminal clip domain forming the disulfide bond, Cys residues of the catalytic domain, and Cys residues forming inter‐bridge between clip domain and catalytic domain were also well preserved. Three amino acid residues, His, Asp, and Ser, within the active site were perfectly conserved in HcPE‐2 and HcPE‐3, however, His was replaced with Gln178 in HcPE‐1. The Arg residues (HcPE‐1, Arg132; HcPE‐2, Arg134; HcPE‐3, Arg325) known as the activation sites by proteolytic cleavage were preserved well in all three types of protein. In case of HcPE‐3, three continuous clip‐like domains existed in the N terminal. As the result of phylogenetic analysis, three clip domain family of protein from H. cunea make groups with arthropod proclotting enzyme precursor. Northern blot analysis showed all three genes were induced through an injection of Escherichia coli, but expression patterns were varied.  相似文献   

12.
A common motif found in invertebrate serine proteases involved in immunity and development is the clip domain, proposed to regulate catalytic activity or protein-protein interactions within proteolytic cascades. Snake functions in a cascade that patterns the Drosophila embryo, and provides an accessible model for exploring the structural requirements for clip domain function. We tested Snake zymogens bearing charged-to-alanine mutations in the clip domain for their ability to rescue embryos lacking endogenous Snake and for their interactions by S2 cell co-transfection with upstream Gastrulation Defective and downstream Easter in the protease cascade. Of 13 single and multiple substitutions, one double mutant in a predicted protruding region exhibited a severe defect in embryonic rescue but showed only minimal defects in the co-transfection assay. We discuss implications of these and other results for potential biological roles of the Snake clip domain and for use of the in vitro assay in predicting protease behavior.  相似文献   

13.
14.
15.
Mutagenesis throughout the single-chain urokinase-type plasminogen activator (scu-PA) cDNA molecule, followed by expression of the mutant genes and secretion of the resulting mutant proteins from yeast, has been used to determine the amino acid residues important for activity of scu-PA molecules. Twelve out of 13 colonies secreting variant scu-PA molecules with decreased ability to form a zone of fibrinolysis had mutant genes with a single codon alteration in the serine protease encoding domain (B-chain). Many of these changes are of highly conserved residues in the serine proteases and are consequently of considerable interest. A model three-dimensional structure of the protease domain of urokinase was used to explain the basis for the effects of these down mutations. The model showed that the strongest down mutations result from either interference of the mutated side chain with substrate binding at the active site or the introduction of bulky or charged groups at structurally sensitive internal positions in the molecule. Attempts to find second site revertants of five down mutants, altered either at the plasmin activation site or near the serine at the active site, only resulted in same-site revertants, with the original or closely related amino acids restored.  相似文献   

16.
Snake venom proteases affecting hemostasis and thrombosis   总被引:24,自引:0,他引:24  
The structure and function of snake venom proteases are briefly reviewed by putting the focus on their effects on hemostasis and thrombosis and comparing with their mammalian counterparts. Up to date, more than 150 different proteases have been isolated and about one third of them structurally characterized. Those proteases are classified into serine proteases and metalloproteinases. A number of the serine proteases show fibrin(ogen)olytic (thrombin-like) activities, which are not susceptible to hirudin or heparin and perhaps to most endogenous serine protease inhibitors, and form abnormal fibrin clots. Some of them have kininogenase (kallikrein-like) activity releasing hypotensive bradykinin. A few venom serine proteases specifically activate coagulation factor V, protein C, plasminogen or platelets. The venom metalloproteinases, belonging to the metzincin family, generally show fibrin(ogen)olytic and extracellular matrix-degrading (hemorrhagic) activities. A few venom metalloproteinases show a unique substrate specificity toward coagulation factor X, platelet membrane receptors or von Willebrand factor. A number of the metalloproteinases have chimeric structures composed of several domains such as proteinase, disintegrin-like, Cys-rich and lectin-like domains. The disintegrin-like domain seems to facilitate the action of those metalloproteinases by interacting with platelet receptors. A more detailed analysis of snake venom proteases should find their usefulness for the medical and pharmacological applications in the field of thrombosis and hemostasis.  相似文献   

17.
Ribonuclease H (RNase H) from Escherichia coli is an endonuclease that specifically degrades the RNAs of RNA:DNA hybrids. The enzyme is a single polypeptide chain of 155 amino acid residues, of which 4 are methionines. To solve the crystallographic three-dimensional structure of E. coli RNase H by the multi-wavelength anomalous diffraction technique, we have constructed methionine auxotrophic strains of E. coli that overexpress selenomethionyl RNase H. MIC88 yields about 10 mg of selenomethionyl RNase H per liter of culture, which is comparable to the overexpression of the natural recombinant protein. We have purified both proteins to homogeneity and crystallized them isomorphously in the presence of sulfate. These are Type I crystals of space group P2(1)2(1)2(1) with the cell parameters a = 41.8 A, b = 86.4 A, c = 36.4 A, one monomer per asymmetric unit, and approximately 36% (v/v) solvent. Crystals of both proteins diffract to beyond 2-A Bragg spacings and are relatively durable in an x-ray beam. On replacement of sulfate with NaCl, crystals of natural RNase H grow as Type I' (very similar to Type I) at pH between 7.0 and 8.0; at pH 8.8, crystals of Type II are obtained in space group P2(1)2(1)2(1) with a = 44.3 A, b = 87.3 A, and c = 35.7 A. Type II crystals can be converted to Type I by soaking in phosphate buffer. RNase H crystals of Type II have also been reported by Kanaya et al. (Kanaya, S., Kohara, A., Miyakawa, M., Matsuzaki, T., Morikawa, K., and Ikehara, M. (1989) J. Biol. Chem. 264, 11546-11549).  相似文献   

18.
Crystals of methylamine-treated alpha 2-macroglobulin (alpha 2M-MA), alpha 2-macroglobulin in complex with two molecules of trypsin, alpha 2M-T2, one molecule of plasmin, alpha 2M-PL, and one molecule of plasmin followed by methylamine-treatment, alpha 2M-PL(MA), have reproducibly been obtained using ammonium sulfate or magnesium sulfate as precipitants. The crystals are fragile tetragonal bipyramids of up to 1.5 mm in length. Crystals of alpha 2M-MA diffracted to at least 9 A resolution, crystals of alpha 2M-T2 diffracted to 10 A resolution and crystals of alpha 2M-PL and alpha 2M-PL(MA) diffracted to 11 A resolution. For alpha 2M-MA the cell parameters were determined as: a=b=257 A, c=555 A; and for alpha 2M-T2 as: a=b=247 A, c=559 A. For both preparations the space group was I4(1)22. As estimated from density measurements, the crystals of alpha 2M-MA and alpha 2M-T2 contain one 360 kDa alpha 2M dimer per asymmetric unit. The volume of the asymmetric unit/molecular weight, Vm, was estimated at 5.6 A3/Da. The crystal parameters of alpha 2M-PL and alpha 2M-PL(MA) were not determined.  相似文献   

19.
The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.  相似文献   

20.
Crystals of vinorine synthase (VS) from medicinal plant Rauvolfia serpentina expressed in Escherichia coli have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. The enzyme is involved in the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure of a member of this enzyme family is known. The crystals belong to the space group P2(1)2(1)2(1) with cell dimensions of a=82.3 A, b=89.6 A and c=136.2 A. Under cryoconditions (120 K), a complete data set up to 2.8 A was collected at a synchrotron source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号