首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rv1900c, a Mycobacterium tuberculosis adenylyl cyclase, is composed of an N-terminal alpha/beta-hydrolase domain and a C-terminal cyclase homology domain. It has an unusual 7% guanylyl cyclase side-activity. A canonical substrate-defining lysine and a catalytic asparagine indispensable for mammalian adenylyl cyclase activity correspond to N342 and H402 in Rv1900c. Mutagenic analysis indicates that these residues are dispensable for activity of Rv1900c. Structures of the cyclase homology domain, solved to 2.4 A both with and without an ATP analog, form isologous, but asymmetric homodimers. The noncanonical N342 and H402 do not interact with the substrate. Subunits of the unliganded open dimer move substantially upon binding substrate, forming a closed dimer similar to the mammalian cyclase heterodimers, in which one interfacial active site is occupied and the quasi-dyad-related active site is occluded. This asymmetry indicates that both active sites cannot simultaneously be catalytically active. Such a mechanism of half-of-sites-reactivity suggests that mammalian heterodimeric adenylyl cyclases may have evolved from gene duplication of a primitive prokaryote-type cyclase, followed by loss of function in one active site.  相似文献   

2.
Adenylyl cyclase Rv2212 from Mycobacterium tuberculosis has a domain composition identical to the pH-sensing isoform Rv1264, an N-terminal regulatory domain and a C-terminal catalytic domain. The maximal velocity of Rv2212 was the highest of all 10 mycobacterial cyclases investigated to date (3.9 micromol cAMP.mg(-1).min(-1)), whereas ATP substrate affinity was low (SC(50) = 2.1 mm ATP). Guanylyl cyclase side activity was absent. The activities and kinetics of the holoenzyme and of the catalytic domain alone were similar, i.e. in distinct contrast to the Rv1264 adenylyl cyclase, in which the N-terminal domain is autoinhibitory. Unsaturated fatty acids strongly stimulated Rv2212 activity by increasing substrate affinity. In addition, fatty acids greatly enhanced the pH sensitivity of the holoenzyme, thus converting Rv2212 to a pH sensor adenylyl cyclase. Fatty acid binding to Rv2212 was modelled by homology to a recent structure of the N-terminal domain of Rv1264, in which a fatty acid-binding pocket is defined. Rv2212 appears to integrate three cellular parameters: ATP concentration, presence of unsaturated fatty acids, and pH. These regulatory properties open the possibility that novel modes of cAMP-mediated signal transduction exist in the pathogen.  相似文献   

3.
Mycobacterium tuberculosis contains 15 class III adenylyl cyclase genes. The gene Rv1264 is predicted to be composed of two distinct protein modules. The C terminus seems to code for a catalytic domain belonging to a subfamily of adenylyl cyclase isozymes mostly found in Gram-positive bacteria. The expressed protein was shown to function as a homodimeric adenylyl cyclase (1 micromol of cAMP x mg(-1) x min(-1)). In analogy to the structure of the mammalian adenylyl cyclase catalyst, six amino acids were targeted by point mutations and found to be essential for catalysis. The N-terminal region represents a novel protein domain, the occurrence of which is restricted to several adenylyl cyclases present in Gram-positive bacteria. The purified full-length enzyme was 300-fold less active than the catalytic domain alone. Thus, the N-terminal domain appeared to be autoinhibitory. The N-terminal domain contains three prominent polar amino acid residues (Asp(107), Arg(132), and Arg(191)) that are invariant in all seven sequences of this domain currently available. Mutation of Asp(107) to Ala relaxed the inhibition and resulted in a 6-fold increase in activity of the Rv1264 holoenzyme, thus supporting the role of this domain as a potential novel regulator of adenylyl cyclase activity.  相似文献   

4.
The mycobacterial Rv1625c gene product is an adenylyl cyclase with sequence similarity to the mammalian enzymes. The catalytic domain of the enzyme forms a homodimer and residues specifying adenosine triphosphate (ATP) specificity lie at the dimer interface. Mutation of these residues to those present in guanylyl cyclases failed to convert the enzyme to a guanylyl cyclase, but dramatically reduced its adenylyl cyclase activity and altered its oligomeric state. Computational modeling revealed subtle differences in the dimer interface that could explain the biochemical data, suggesting that the structural and catalytic features of this homodimeric adenylyl cyclase are in contrast to those of the heterodimeric mammalian enzymes.  相似文献   

5.
The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7A. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase.  相似文献   

6.
Screening the Mycobacterium tuberculosis H37Rv genomic library for complementation of catabolic defect for cAMP-dependent expression of maltose operon produced the adenylyl cyclase gene (Mtb cya, (1997)) annotated later as Rv1625c (Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., III, et al. (1998) Nature 393, 537-544). The deduced amino acid (aa) sequence (443 aa) encoded by Mtb cya contains a single hydrophobic domain of six transmembrane helices (152 aa) in the amino-terminal half of the protein. Flanking this domain are an arginine-rich (17%) amino-terminal cytoplasmic tail (46 aa) and a carboxyl-terminal cytoplasmic domain (245 aa) with extensive homology to the catalytic core of eukaryotic adenylyl cyclases. Site-directed mutagenesis of Arg(43) and Arg(44) to alanine/glycine showed a loss of adenylyl cyclase activity, whereas mutagenesis to lysine restored the activity. Hence it is proposed that the formation of the catalytic site in Mtb adenylyl cyclase requires an interaction between Arg(43) and Arg(44) residues in the distal cytoplasmic tail and the carboxyl-terminal cytoplasmic domain. Mtb adenylyl cyclase activity at the physiological concentration of ATP (1 mm) was 475 nmol of cAMP/min/mg of membrane protein in the presence of Mn(2+) but only 10 nmol of cAMP/min/mg of membrane protein in the presence of Mg(2+). The physiological significance of the activation of Mtb adenylyl cyclase by Mn(2+) is discussed in view of the presence of manganese transporter protein in mycobacteria and macrophages wherein mycobacteria reside.  相似文献   

7.
The genes Rv1318c, Rv1319c, Rv1320c and Rv3645 of Mycobacterium tuberculosis are predicted to code for four out of 15 adenylyl cyclases in this pathogen. The proteins consist of a membrane anchor, a HAMP region and a class IIIb adenylyl cyclase catalytic domain. Expression and purification of the isolated catalytic domains yielded adenylyl cyclase activity for all four recombinant proteins. Expression of the HAMP region fused to the catalytic domain increased activity in Rv3645 21-fold and slightly reduced activity in Rv1319c by 70%, demonstrating isoform-specific effects of the HAMP domains. Point mutations were generated to remove predicted hydrophobic protein surfaces in the HAMP domains. The mutations further stimulated activity in Rv3645 eight-fold, whereas the effect on Rv1319c was marginal. Thus HAMP domains can act directly as modulators of adenylyl cyclase activity. The modulatory properties of the HAMP domains were confirmed by swapping them between Rv1319c and Rv3645. The data indicate that in the mycobacterial adenylyl cyclases the HAMP domains do not display a uniform regulatory input but instead each form a distinct signaling unit with its adjoining catalytic domain.  相似文献   

8.
The adenylyl cyclase Rv1625c from Mycobacterium tuberculosis codes for a protein with six transmembrane spans and a catalytic domain, i.e. it corresponds to one half of the pseudoheterodimeric mammalian adenylyl cyclases (ACs). Rv1625c is active as a homodimer. We investigated the role of the Rv1625c membrane domain and demonstrate that it efficiently dimerizes the protein resulting in a 7.5-fold drop in K(m) for ATP. Next, we generated a duplicated Rv1625c AC dimer by a head-to-tail concatenation. This produced an AC with a domain order exactly as the mammalian pseudoheterodimers. It displayed positive cooperativity and a 60% increase of v(max) compared with the Rv1625c monomer. Further, we probed the compatibility of mycobacterial and mammalian membrane domains. The second membrane anchor in the Rv1625c concatamer was replaced with membrane domain I or II of rabbit type V AC. The mycobacterial and either mammalian membrane domains are compatible with each other and both recombinant proteins are active. A M. tuberculosis Rv1625c knockout strain was assayed in a mouse infection model. In vitro growth characteristics and in vivo organ infection and mortality were unaltered in the knockout strain indicating that AC Rv1625c alone is not a virulence factor.  相似文献   

9.
In Paramecium, cAMP formation is stimulated by a potassium conductance, which is an intrinsic property of the adenylyl cyclase. We cloned a full-length cDNA and several gDNA fragments from Paramecium and Tetrahymena coding for adenylyl cyclases with a novel domain composition. A putative N-terminal ion channel domain contains a canonical S4 voltage-sensor and a canonical potassium pore-loop located C-terminally after the last transmembrane span on the cytoplasmic side. The adenylyl cyclase catalyst is C-terminally located. DNA microinjection of a green fluorescent protein (GFP)-tagged construct into the macronucleus of Paramecium resulted in ciliary localization of the expressed protein. An identical gene coding for an ion-channel adenylyl cyclase was cloned from the malaria parasite Plasmodium falciparum. Expression of the catalytic domain of the latter in Sf9 cells yielded an active homodimeric adenylyl cyclase. The occurrence of this highly unique subtype of adenylyl cyclase appears to be restricted to ciliates and apicomplexa.  相似文献   

10.
The Class III nucleotide cyclases are found in bacteria, eukaryotes and archaebacteria. Our survey of the bacterial and archaebacterial genome and plasmid sequences identified 193 Class III cyclase genes in only 29 species, of which we predict the majority to be adenylyl cyclases. Interestingly, several putative cyclase genes were found to have non-conserved substrate specifying residues. Ancestors of the eukaryotic C1-C2 domain containing soluble adenylyl cyclases as well as the protist guanylyl cyclases were found in bacteria. Diverse domains were fused to the cyclase domain and phylogenetic analysis indicated that most proteins within a single cluster have similar domain compositions, emphasising the ancient evolutionary origin and versatility of the cyclase domain.  相似文献   

11.
A novel gene encoding an adenylyl cyclase, designated cyaG, was identified in the filamentous cyanobacterium Spirulina platensis. The predicted amino acid sequence of the C-terminal region of cyaG was similar to the catalytic domains of Class III adenylyl and guanylyl cyclases. The N-terminal region next to the catalytic domain of CyaG was similar to the dimerization domain, which is highly conserved among guanylyl cyclases. As a whole, CyaG is more closely related to guanylyl cyclases than to adenylyl cyclases in its primary structure. The catalytic domain of CyaG was expressed in Escherichia coli and partially purified. CyaG showed adenylyl cyclase (but not guanylyl cyclase) activity. By site-directed mutagenesis of three amino acid residues (Lys(533), Ile(603), and Asp(605)) within the purine ring recognition site of CyaG to Glu, Arg, and Cys, respectively, CyaG was transformed to a guanylyl cyclase that produced cGMP instead of cAMP. Thus having properties of both cyclases, CyaG may therefore represent a critical position in the evolution of Class III adenylyl and guanylyl cyclases.  相似文献   

12.
Guanylyl cyclases catalyze the formation of cGMP from GTP, but display extensive identity at the catalytic domain primary amino acid level with the adenylyl cyclases. The recent solving of the crystal structures of soluble forms of adenylyl cyclase has resulted in predictions of those amino acids important for substrate specificity. Modeling of a membrane-bound homodimeric guanylyl cyclase predicted the comparable amino acids that would interact with the guanine ring. Based on these structural data, the replacement of three key residues in the heterodimeric form of soluble guanylyl cyclase has led to a complete conversion in substrate specificity. Furthermore, the mutant enzyme remained fully sensitive to sodium nitroprusside, a nitric oxide donor.  相似文献   

13.
Mycobacteria harbor a unique class of adenylyl cyclases with a complex domain organization consisting of an N-terminal putative adenylyl cyclase domain fused to a nucleotide-binding adaptor shared by apoptotic protease-activating factor-1, plant resistance proteins, and CED-4 (NB-ARC) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal helix-turn-helix (HTH) domain. The products of the rv0891c-rv0890c genes represent a split gene pair, where Rv0891c has sequence similarity to adenylyl cyclases, and Rv0890c harbors the NB-ARC-TPR-HTH domains. Rv0891c had very low adenylyl cyclase activity so it could represent a pseudoenzyme. By analyzing the genomic locus, we could express and purify Rv0890c and find that the NB-ARC domain binds ATP and ADP, but does not hydrolyze these nucleotides. Using systematic evolution of ligands by exponential enrichment (SELEX), we identified DNA sequences that bound to the HTH domain of Rv0890c. Uniquely, the HTH domain could also bind RNA. Atomic force microscopy revealed that binding of Rv0890c to DNA was sequence independent, and binding of adenine nucleotides to the protein induced the formation of higher order structures that may represent biocrystalline nucleoids. This represents the first characterization of this group of proteins and their unusual biochemical properties warrant further studies into their physiological roles in future.  相似文献   

14.
cAMP serves as a second messenger in virtually all organisms. The most wide-spread class of cAMP-generating enzymes are the class III adenylyl cyclases. Most class III adenylyl cyclases are multi-domain proteins. The catalytic domains exclusively work as dimers, catalysis proceeds at the dimer interface, so that both monomers provide catalytic residues to each catalytic center. Inspection of amino acid sequence profiles suggests a division of the class III adenylyl cyclases in to four subclasses, class IIIa–IIId. Genome projects and postgenomic analysis have provided novel aspects in terms of catalysis and regulation. Alterations in the canonical catalytic residues occur in all four subclasses suggesting a plasticity of the catalytic mechanisms. The vast variety of additional, probably regulatory modules found in class III adenylyl cyclases obviously reflects a large collection of regulatory inputs the catalytic domains have adapted to. The large versatility of class III adenylyl cyclase catalytic domains remains a major scientific challenge.  相似文献   

15.
The molecular basis by which organisms detect and respond to fluctuations in inorganic carbon is not known. The cyaB1 gene of the cyanobacterium Anabaena sp. PCC7120 codes for a multidomain protein with a C-terminal class III adenylyl cyclase catalyst that was specifically stimulated by bicarbonate ion (EC50 9.6 mm). Bicarbonate lowered substrate affinity but increased reaction velocity. A point mutation in the active site (Lys-646) reduced activity by 95% and was refractory to bicarbonate activation. We propose that Lys-646 specifically coordinates bicarbonate in the active site in conjunction with an aspartate to threonine polymorphism (Thr-721) conserved in class III adenylyl cyclases from diverse eukaryotes and prokaryotes. Using recombinant proteins we demonstrated that adenylyl cyclases that contain the active site threonine (cyaB of Stigmatella aurantiaca and Rv1319c of Mycobacterium tuberculosis) are bicarbonate-responsive, whereas adenylyl cyclases with a corresponding aspartate (Rv1264 of Mycobacterium) are bicarbonate-insensitive. Large numbers of class III adenylyl cyclases may therefore be activated by bicarbonate. This represents a novel mechanism by which diverse organisms can detect bicarbonate ion.  相似文献   

16.
17.
Paramecium has a 280-kDa guanylyl cyclase. The N terminus resembles a P-type ATPase, and the C terminus is a guanylyl cyclase with the membrane topology of canonical mammalian adenylyl cyclases, yet with the cytosolic loops, C1 and C2, inverted compared with the mammalian order. We expressed in Escherichia coli the cytoplasmic domains of the protozoan guanylyl cyclase, independently and linked by a peptide, as soluble proteins. The His(6)-tagged proteins were enriched by affinity chromatography and analyzed by immunoblotting. Guanylyl cyclase activity was reconstituted upon mixing of the recombinant C1a- and C2-positioned domains and in a linked C1a-C2 construct. Adenylyl cyclase activity was minimal. The nucleotide substrate specificity was switched from GTP to ATP upon mutation of the substrate defining amino acids Glu(1681) and Ser(1748) in the C1-positioned domain to the adenylyl cyclase specific amino acids Lys and Asp. Using the C2 domains of mammalian adenylyl cyclases type II or IX and the C2-positioned domain from the Paramecium guanylyl cyclase we reconstituted a soluble, all C2 adenylyl cyclase. All enzymes containing protozoan domains were not affected by Galpha(s)/GTP or forskolin, and P site inhibitors were only slightly effective.  相似文献   

18.
19.
New structures solved in 1997 revealed that the adenylyl cyclase core consists of a pair of catalytic domains arranged in a wreath. Homologous catalytic domains are arranged in diverse adenylyl and guanylyl cyclases as symmetric homodimers or pseudosymmetric heterodimers. The kinship of the adenylyl and guanylyl cyclases has been confirmed by the structure-based interconversion of their nucleotide specificities. Catalysis is activated when two metal-binding aspartate residues on one domain are juxtaposed with a key aspargine—arginine pair on the other. Allosteric activators of mammalian adenylyl cyclase, forskolin and the stimulatory G protein α subunit, promote the catalytically optimal juxtaposition of the two domains.  相似文献   

20.
The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号