首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
mRNA degradation is an important control point in the regulation of gene expression and has been shown to be linked to the process of translation. One clear example of this linkage is the observation that nonsense mutations in a gene can accelerate the decay of the corresponding mRNA. In the yeast Saccharomyces cerevisiae, the product of the UPF1 gene, harboring zinc finger, NTP hydrolysis, and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. As a first step toward understanding the molecular and biochemical mechanism of nonsense-mediated mRNA decay, we have purified Upf1p from a yeast extract and characterized its nucleic acid-dependent NTPase activity, helicase activity, and nucleic acid binding properties. The results presented in this paper demonstrate that Upf1p contains both RNA- and DNA-dependent ATPase activities and RNA and DNA helicase activities. In the absence of ATP, Upf1p binds to single-stranded RNA or DNA, whereas hydrolysis of ATP facilitates its release from single-stranded nucleic acid. Based on these results, the role of Upf1p's biochemical activities in mRNA decay and translation are discussed.  相似文献   

2.
To understand the relationship between translation and mRNA decay, we have been studying how premature translation termination accelerates the degradation of mRNAs. In the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in the stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. Biochemical analysis of the wild-type Upf1p demonstrated that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. In the work described in the accompanying paper (Y. Weng, K. Czaplinski, and S. W. Peltz, Mol. Cell. Biol. 16:5477-5490, 1996) mutations in the helicase region of Upf1p that inactivated its mRNA decay function but prevented suppression of leu2-2 and tyr7-1 nonsense alleles are identified. On the basis of these results, we suggested that Upf1p is a multifunctional protein involved in modulating mRNA decay and translation termination at nonsense codons. If this is true, we predict that UPF1 mutations with the converse phenotype should be identified. In this report, we describe the identification and biochemical characterization of mutations in the amino-terminal cysteine- and histidine-rich region of Upf1p that have normal nonsense-mediated mRNA decay activities but are able to suppress leu2-2 and tyr7-1 nonsense alleles. Biochemical characterization of these mutant proteins demonstrated that they have altered RNA binding properties. Furthermore, using the two-hybrid system, we characterized the Upf1p-Upf2p interactions and demonstrated that Upf2p interacts with Upf3p. Mutations in the cysteine- and histidine-rich region of Upf1p abolish Upf1p-Upf2p interaction. On the basis of these results, the role of the Upf complex in nonsense-mediated mRNA decay and nonsense suppression is discussed.  相似文献   

3.
The nonsense-mediated mRNA decay pathway decreases the abundance of mRNAs that contain premature termination codons and prevents suppression of nonsense alleles. The UPF1 gene in the yeast Saccharomyces cerevisiae was shown to be a trans-acting factor in this decay pathway. The Upf1p demonstrates RNA-dependent ATPase, RNA helicase, and RNA binding activities. The results presented here investigate the binding affinity of the Upf1p for ATP and the consequences of ATP binding on its affinity for RNA. The results demonstrate that the Upf1p binds ATP in the absence of RNA. Consistent with this result, the TR800AA mutant form of the Upf1p still bound ATP, although it does not bind RNA. ATP binding also modulates the affinity of Upf1p for RNA. The RNA binding activity of the DE572AA mutant form of the Upf1p, which lacks ATPase activity, still bound ATP as efficiently as the wild-type Upf1p and destabilized the Upf1p-RNA complex. Similarly, ATPgammaS, a nonhydrolyzable analogue of ATP, interacted with Upf1p and promoted disassociation of the Upf1p-RNA complex. The conserved lysine residue (K436) in the helicase motif Ia in the Upf1p was shown to be critical for ATP binding. Taken together, these findings formally prove that ATP can bind Upf1p in the absence of RNA and that this interaction has consequences on the formation of the Upf1p-RNA complex. Further, the results support the genetic evidence indicating that ATP binding is important for the Upf1p to increase the translation termination efficiency at a nonsense codon. Based on these findings, a model describing how the Upf1p functions in modulating translation and turnover and the potential insights into the mechanism of the Upf1p helicase will be discussed.  相似文献   

4.
The yeast UPF1, UPF2 and UPF3 genes encode trans-acting factors of the nonsense-mediated mRNA decay pathway. In addition, the upf1Delta strain demonstrates a nonsense suppression phenotype and Upf1p has been shown to interact with the release factors eRF1 and eRF3. In this report, we show that both upf2Delta and upf3Delta strains demonstrate a nonsense suppression phenotype independent of their effect on mRNA turnover. We also demonstrate that Upf2p and Upf3p interact with eRF3, and that their ability to bind eRF3 correlates with their ability to complement the nonsense suppression phenotype. In vitro experiments demonstrate that Upf2p, Upf3p and eRF1 compete with each other for interacting with eRF3. Con versely, Upf1p binds to a different region of eRF3 and can form a complex with these factors. These results suggest a sequential surveillance complex assembly pathway, which occurs during the premature translation termination process. We propose that the observed nonsense suppression phenotype in the upfDelta strains can be attributed to a defect in the surveillance complex assembly.  相似文献   

5.
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway that recognizes and degrades aberrant mRNAs containing premature stop codons. A critical protein in NMD is Upf1p, which belongs to the helicase super family 1 (SF1), and is thought to utilize the energy of ATP hydrolysis to promote transitions in the structure of RNA or RNA-protein complexes. The crystal structure of the catalytic core of human Upf1p determined in three states (phosphate-, AMPPNP- and ADP-bound forms) reveals an overall structure containing two RecA-like domains with two additional domains protruding from the N-terminal RecA-like domain. Structural comparison combined with mutational analysis identifies a likely single-stranded RNA (ssRNA)-binding channel, and a cycle of conformational change coupled to ATP binding and hydrolysis. These conformational changes alter the likely ssRNA-binding channel in a manner that can explain how ATP binding destabilizes ssRNA binding to Upf1p.  相似文献   

6.
The Upf1 protein in yeast has been implicated in the modulation of efficient translation termination as well as in the accelerated turnover of mRNAs containing premature stop codons, a phenomenon called nonsense-mediated mRNA decay (NMD). A human homolog of the yeast UPF1, termed HUpf1/RENT1, has also been identified. The HUpf1 has also been shown to play a role in NMD in mammalian cells. Comparison of the yeast and human UPF1 proteins demonstrated that the amino terminal cysteine/histidine-rich region and the region comprising the domains that define this protein as a superfamily group I helicase have been conserved. The yeast Upf1p demonstrates RNA-dependent ATPase and 5' --> 3' helicase activities. In this paper, we report the expression, purification, and characterization of the activities of the human Upf1 protein. We demonstrate that human Upf1 protein displays a nucleic-acid-dependent ATPase activity and a 5'--> 3' helicase activity. Furthermore, human Upf1 is an RNA-binding protein whose RNA-binding activity is modulated by ATP. Taken together, these results indicate that the activities of the Upf1 protein are conserved across species, reflecting the conservation of function of this protein throughout evolution.  相似文献   

7.
8.
9.
In yeast the UPF1, UPF2 and UPF3 genes encode three interacting factors involved in translation termination and nonsense-mediated mRNA decay (NMD). UPF1 plays a central role in both processes. In addition, UPF1 was originally isolated as a multicopy suppressor of mitochondrial splicing deficiency, and its deletion leads to an impairment in respiratory growth. Here, we provide evidence that inactivation of UPF2 or UPF3, like that of UPF1, leads to an impairment in respiratory competence, suggesting that their products, Upf1p, Upf2p and Upf3p, are equivalently involved in mitochondrial biogenesis. In addition, however, we show that only Upf1p acts as a multicopy suppressor of mitochondrial splicing deficiency, and its activity does not require either Upf2p or Upf3p. Mutations in the conserved cysteine- and histidine-rich regions and ATPase and helicase motifs of Upf1p separate the ability of Upf1p to complement the respiratory impairment of a Deltaupf1 strain from its ability to act as a multicopy suppressor of mitochondrial splicing deficiency, indicating that distinct pathways express these phenotypes. In addition, we show that, when overexpressed, Upf1p is not detected within mitochondria, suggesting that its role as multicopy suppressor of mitochondrial splicing deficiency is indirect. Furthermore, we provide evidence that cells overexpressing certain upf1 alleles accumulate a phosphorylated isoform of Upf1p. Altogether, these results indicate that overexpression of Upf1p compensates for mitochondrial splicing deficiency independently of its role in mRNA surveillance, which relies on Upf1p-Upf2p-Upf3p functional interplay.  相似文献   

10.
Upf1 is a crucial factor in nonsense-mediated mRNA decay, the eukaryotic surveillance pathway that degrades mRNAs containing premature stop codons. The essential RNA-dependent ATPase activity of Upf1 is triggered by the formation of the surveillance complex with Upf2-Upf3. We report crystal structures of Upf1 in the presence and absence of the CH domain, captured in the transition state with ADP:AlF?? and RNA. In isolation, Upf1 clamps onto the RNA, enclosing it in a channel formed by both the catalytic and regulatory domains. Upon binding to Upf2, the regulatory CH domain of Upf1 undergoes a large conformational change, causing the catalytic helicase domain to bind RNA less extensively and triggering its helicase activity. Formation of the surveillance complex thus modifies the RNA binding properties and the catalytic activity of Upf1, causing it to switch from an RNA-clamping mode to an RNA-unwinding mode.  相似文献   

11.
Rapid turnover of nonsense-containing mRNAs in the yeast Saccharomyces cerevisiae is dependent on the products of the UPF1 (Upf1p), NMD2/UPF2 (Nmd2p) and UPF3 (Upf3p) genes. Mutations in each of these genes lead to the selective stabilization of mRNAs containing early nonsense mutations without affecting the decay rates of most other mRNAs. NMD2 was recently identified in a two-hybrid screen as a gene that encodes a Upf1p-interacting protein. To identify the amino acids essential to this interaction, we used two-hybrid analysis as well as missense, nonsense, and deletion mutants of NMD2, and mapped the Upf1p-interacting domain of Nmd2p to a 157-amino acid segment at its C-terminus. Mutations in this domain that disrupt interaction with Upf1p also disrupt nonsense-mediated mRNA decay. A dominant-negative deletion allele of NMD2 identified previously includes the Upf1p-interacting domain. However, mutations in the Upf1p-interacting domain do not affect dominant-negative inhibition of mRNA decay caused by this allele, suggesting interaction with yet another factor. These results, and the observation that deletion of a putative nuclear localization signal and a putative transmembrane domain also inactivate nonsense-mediated mRNA decay, suggest that Nmd2p may contain as many as four important functional domains.  相似文献   

12.
The RNA helicase Upf1 is a multifaceted eukaryotic enzyme involved in DNA replication, telomere metabolism and several mRNA degradation pathways. Upf1 plays a central role in nonsense-mediated mRNA decay (NMD), a surveillance process in which it links premature translation termination to mRNA degradation with its conserved partners Upf2 and Upf3. In human, both the ATP-dependent RNA helicase activity and the phosphorylation of Upf1 are essential for NMD. Upf1 activation occurs when Upf2 binds its N-terminal domain, switching the enzyme to the active form. Here, we uncovered that the C-terminal domain of Upf1, conserved in higher eukaryotes and containing several essential phosphorylation sites, also inhibits the flanking helicase domain. With different biochemical approaches we show that this domain, named SQ, directly interacts with the helicase domain to impede ATP hydrolysis and RNA unwinding. The phosphorylation sites in the distal half of the SQ domain are not directly involved in this inhibition. Therefore, in the absence of multiple binding partners, Upf1 is securely maintained in an inactive state by two intramolecular inhibition mechanisms. This study underlines the tight and intricate regulation pathways required to activate multifunctional RNA helicases like Upf1.  相似文献   

13.
Premature termination (nonsense) codons trigger rapid mRNA decay by the nonsense-mediated mRNA decay (NMD) pathway. Two conserved proteins essential for NMD, UPF1 and UPF2, are phosphorylated in higher eukaryotes. The phosphorylation and dephosphorylation of UPF1 appear to be crucial for NMD, as blockade of either event in Caenorhabditis elegans and mammals largely prevents NMD. The universality of this phosphorylation/dephosphorylation cycle pathway has been questioned, however, because the well-studied Saccharomyces cerevisiae NMD pathway has not been shown to be regulated by phosphorylation. Here, we used in vitro and in vivo biochemical techniques to show that both S. cerevisiae Upf1p and Upf2p are phosphoproteins. We provide evidence that the phosphorylation of the N-terminal region of Upf2p is crucial for its interaction with Hrp1p, an RNA-binding protein that we previously showed is essential for NMD. We identify specific amino acids in Upf2p's N-terminal domain, including phosphorylated serines, which dictate both its interaction with Hrp1p and its ability to elicit NMD. Our results indicate that phosphorylation of UPF1 and UPF2 is a conserved event in eukaryotes and for the first time provide evidence that Upf2p phosphorylation is crucial for NMD.  相似文献   

14.
Rapid turnover of nonsense-containing mRNAs in Saccharomyces cerevisiae is dependent on Upf1p, Nmd2p, and Upf3p, the products of the UPF1, NMD2/UPF2, and UPF3 genes, respectively. We showed previously that Upf1p and Nmd2p interact and that this interaction is required for nonsense-mediated mRNA decay (F. He and A. Jacobson, Genes Dev. 9:437-454, 1995; F. He, A. H. Brown, and A. Jacobson, RNA 2:153-170, 1996). In this study we have used the yeast two-hybrid system to define other protein-protein interactions among the essential components of this decay pathway. Nmd2p-Upf3p and Upf1p-Upf3p interactions were identified, and the respective domains involved in these interactions were delineated by deletion analysis. The domains of Upf1p and Upf3p putatively involved in their mutual interaction were found to correspond to the domains on the two proteins which interact with Nmd2p, suggesting that Nmd2p bridges Upf1p and Upf3p. This conclusion was reinforced by experiments showing that: (i) deletion of NMD2 completely abolishes interactions between Upf1p and Upf3p and (ii) overexpression of full-length Nmd2p or Nmd2p fragments that retain Upf1p- and Upf3p-interacting domains promotes 10- to 200-fold enhancement of Upf1p-Nmd2p-Upf3p complex formation. These results; the observation that cells harboring either single or multiple deletions of UPF1, NMD2, and UPF3 inhibit nonsense-mediated mRNA decay to the same extent; and an analysis of the possible targets of a dominant-negative NMD2 allele indicate that Upf1p, Nmd2p, Upf3p, and at least one other factor are functionally dependent, interacting components of the yeast nonsense-mediated mRNA decay pathway.  相似文献   

15.
One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity.  相似文献   

16.
17.
RNA helicases are involved in almost every aspect of RNA metabolism, yet very little is known about the regulation of this class of enzymes. In Saccharomyces cerevisiae, the stability and translational fidelity of nonsense-containing mRNAs are controlled by the group I RNA helicase Upf1 and the proteins it interacts with, Upf2 and Upf3. Combining the yeast two-hybrid system with genetic analysis, we show here that the cysteine- and histidine-rich (CH) domain and the RNA helicase domain of yeast Upf1 can engage in two new types of molecular interactions: an intramolecular interaction between these two domains and self-association of each of these domains. Multiple observations indicate that these molecular interactions are crucial for Upf1 regulation. First, coexpression of the CH domain and the RNA helicase domain in trans can reconstitute Upf1 function in both promoting nonsense-mediated mRNA decay (NMD) and preventing nonsense suppression. Second, mutations that disrupt Upf1 intramolecular interaction cause loss of Upf1 function. These mutations weaken Upf2 interaction and, surprisingly, promote Upf1 self-association. Third, the genetic defects resulting from deficiency in Upf1 intramolecular interaction or RNA binding are suppressed by expression of Upf2. Collectively, these data reveal a set of sequential molecular interactions and their roles in regulating Upf1 function during activation of NMD and suggest that cis intramolecular interaction and trans self-association may be general mechanisms for regulation of RNA helicase functions.  相似文献   

18.
Upf1 is a highly conserved RNA helicase essential for nonsense-mediated mRNA decay (NMD), an mRNA quality-control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). For the activation of NMD, UPF1 interacts first with a translation-terminating ribosome and then with a downstream exon-junction complex (EJC), which is deposited at exon-exon junctions during splicing. Although the helicase activity of Upf1 is indispensable for NMD, its roles and substrates have yet to be fully elucidated. Here we show that stable RNA secondary structures between a PTC and a downstream exon-exon junction increase the levels of potential NMD substrates. We also demonstrate that a stable secondary structure within the 3'-untranslated region (UTR) induces the binding of Upf1 to mRNA in a translation-dependent manner and that the Upf1-related molecules are accumulated at the 5'-side of such a structure. Furthermore, we present evidence that the helicase activity of Upf1 is used to bridge the spatial gap between a translation-termination codon and a downstream exon-exon junction for the activation of NMD. Based on these findings, we propose a model that the Upf1-related molecular motor scans the 3'-UTR in the 5'-to-3' direction for the mRNA-binding factors including EJCs to ensure mRNA integrity.  相似文献   

19.
The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, Upf1 preferentially associates with mRNAs that are NMD substrates, but the mechanism of its selective retention on these mRNAs has yet to be elucidated. Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. Here, we define more precisely the nature of this association using conventional and affinity-based purification of ribosomal subunits, and a two-hybrid screen to identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association with high-salt washed or puromycin-released 40S subunits was found to occur without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid analyses and in vitro binding assays identified a specific interaction between Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its function, we found that Upf1:40S association is modulated by ATP, and Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The specific association of Upf1 with the 40S subunit is consistent with the notion that this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, but may also have an important role in dissociation of the premature termination complex.  相似文献   

20.
Dhh1 is a highly conserved DEAD-box protein that has been implicated in many processes involved in mRNA regulation. At least some functions of Dhh1 may be carried out in cytoplasmic foci called processing bodies (P-bodies). Dhh1 was identified initially as a putative RNA helicase based solely on the presence of conserved helicase motifs found in the superfamily 2 (Sf2) of DEXD/H-box proteins. Although initial mutagenesis studies revealed that the signature DEAD-box motif is required for Dhh1 function in vivo, enzymatic (ATPase or helicase) or ATP binding activities of Dhh1 or those of any its many higher eukaryotic orthologues have not been described. Here we provide the first characterization of the biochemical activities of Dhh1. Dhh1 has weaker RNA-dependent ATPase activity than other well characterized DEAD-box helicases. We provide evidence that intermolecular interactions between the N- and C-terminal RecA-like helicase domains restrict its ATPase activity; mutation of residues mediating these interactions enhanced ATP hydrolysis. Interestingly, the interdomain interaction mutant displayed enhanced mRNA turnover, RNA binding, and recruitment into cytoplasmic foci in vivo compared with wild type Dhh1. Also, we demonstrate that the ATPase activity of Dhh1 is not required for it to be recruited into cytoplasmic foci, but it regulates its association with RNA in vivo. We hypothesize that the activity of Dhh1 is restricted by interdomain interactions, which can be regulated by cellular factors to impart stringent control over this very abundant RNA helicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号