首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Codon usage in bacteria: correlation with gene expressivity   总被引:153,自引:53,他引:100       下载免费PDF全文
The nucleic acid sequence bank now contains over 600 protein coding genes of which 107 are from prokaryotic organisms. Codon frequencies in each new prokaryotic gene are given. Analysis of genetic code usage in the 83 sequenced genes of the Escherichia coli genome (chromosome, transposons and plasmids) is presented, taking into account new data on gene expressivity and regulation as well as iso-tRNA specificity and cellular concentration. The codon composition of each gene is summarized using two indexes: one is based on the differential usage of iso-tRNA species during gene translation, the other on choice between Cytosine and Uracil for third base. A strong relationship between codon composition and mRNA expressivity is confirmed, even for genes transcribed in the same operon. The influence of codon use of peptide elongation rate and protein yield is discussed. Finally, the evolutionary aspect of codon selection in mRNA sequences is studied.  相似文献   

2.
3.
The fidelity of codon reading was examined in amino acid starved Escherichia coli. In one case the level of misincorporation of methionine was measured at an isoleucine residue encoded by either the commonly used AUU codon or the rarely used AUA codon. In this situation we found the frequency of methionine misincorporation to be very low and to be unaffected by the identity of the isoleucine codon. In other experiments histidine misincorporation for glutamine was measured in glutamine starved cells with normal levels of histidine-specific tRNA and cells overproducing this tRNA. Cells overproducing the tRNA had higher levels of misincorporation.  相似文献   

4.
Codon usage in plant genes.   总被引:37,自引:6,他引:31       下载免费PDF全文
We have examined codon bias in 207 plant gene sequences collected from Genbank and the literature. When this sample was further divided into 53 monocot and 154 dicot genes, the pattern of relative use of synonymous codons was shown to differ between these taxonomic groups, primarily in the use of G + C in the degenerate third base. Maize and soybean codon bias were examined separately and followed the monocot and dicot codon usage patterns respectively. Codon preference in ribulose 1,5 bisphosphate and chlorophyll a/b binding protein, two of the most abundant proteins in leaves was investigated. These highly expressed are more restricted in their codon usage than plant genes in general.  相似文献   

5.
Codon usage in Pseudomonas aeruginosa.   总被引:83,自引:2,他引:81       下载免费PDF全文
We have generated a codon usage table for Pseudomonas aeruginosa. Codon usage in P. aeruginosa is extremely biased. In contrast to E. coli and yeast, P. aeruginosa preferentially uses those codons within a synonymous codon group with the strongest predicted codon-anticodon interaction. We were unable to correlate a particular codon usage pattern with predicted levels of mRNA expressivity. The choice of a third base reflects the high guanine plus cytosine content of the P. aeruginosa genome (67.2%) and cytosine is the preferred nucleotide for the third codon position.  相似文献   

6.
Codon usage in Aspergillus nidulans.   总被引:17,自引:0,他引:17  
Summary Synonymous codon usage in genes from the ascomycete (filamentous) fungus Aspergillus nidulans has been investigated. A total of 45 gene sequences has been analysed. Multivariate statistical analysis has been used to identify a single major trend among genes. At one end of this trend are lowly expressed genes, whereas at the other extreme lie genes known or expected to be highly expressed. The major trend is from nearly random codon usage (in the lowly expressed genes) to codon usage that is highly biased towards a set of 19–20 optimal codons. The G+C content of the A. nidulans genome is close to 50%, indicating little overall mutational bias, and so the codon usage of lowly expressed genes is as expected in the absence of selection pressure at silent sites. Most of the optimal codons are C- or G-ending, making highly expressed genes more G+C-rich at silent sites.  相似文献   

7.
A codon usage table for the intestinal parasite Giardia lamblia was generated by analysis of the nucleotide sequences of eight genes comprising 3,135 codons. Codon usage revealed a biased use of synonymous codons with a preference for NNC codons (42.1%). The codon usage of G. lamblia more closely resembles that of the prokaryote Halobacterium halobium (correlation coefficient r = 0.73) rather than that of other eukaryotic protozoans, i.e. Trypanosoma brucei (r = 0.434) and Plasmodium falciparum (r = -0.31). These observations are consistent with the view that G. lamblia represents the first line of descent from the ancestral cells that first took on eukaryotic features.  相似文献   

8.
The codon usage of 10 E. histolytica genes comprising 4455 codons was analysed. The codon usage revealed an extremely biased use of synonymous codons with a preference for NNU (44%) and NNA (41.4%) codons. Codons CGG (arg), AGG (arg) and CCG (pro) were absent in the E. histolytica genes examined. The codon usage of E. histolytica resembled that of Plasmodium falciparum.  相似文献   

9.
10.
Codon usage and genome composition   总被引:17,自引:0,他引:17  
Summary The GC levels of codon third positions from 49 genomes coveering a wide phylogenetic range are linearly correlated with the GC levels of the corresponding genomes. Three different relationships have been found: one for prokaryotes and viruses, one for lower eukaryotes, and one for vertebrates. All points not fitting the first relationship can be brought into quasi coincidence with it when plotted against GC levels of coding sequences.  相似文献   

11.
Codon usage and intragenic position   总被引:11,自引:0,他引:11  
Data on codon usage bias in E. coli are re-examined with respect to intragenic position. The bias is less extreme near the beginning than in the rest of the gene, particularly in highly expressed genes. This is contrary to the previous finding that there is a linear decline in codon usage bias with position along weakly expressed genes but little or no change in bias along highly expressed genes. The effect is not confined to genes coding for proteins with leader peptides, as suggested earlier (Burns and Beacham, 1985). There is some evidence of a similar but smaller effect in yeast.  相似文献   

12.
13.
Codon usage and genome evolution   总被引:1,自引:0,他引:1  
The rates and patterns of evolution at silent sites in codons reveal much about the basic features of molecular evolution. Recent increases in the amount of sequence data available for various species and more precise knowledge of the chromosomal locations of those sequences, coming in particular from genome projects, reveal that some features of molecular evolution vary around the genome.  相似文献   

14.
Variation in the strength of selected codon usage bias among bacteria   总被引:15,自引:1,他引:14       下载免费PDF全文
Among bacteria, many species have synonymous codon usage patterns that have been influenced by natural selection for those codons that are translated more accurately and/or efficiently. However, in other species selection appears to have been ineffective. Here, we introduce a population genetics-based model for quantifying the extent to which selection has been effective. The approach is applied to 80 phylogenetically diverse bacterial species for which whole genome sequences are available. The strength of selected codon usage bias, S, is found to vary substantially among species; in 30% of the genomes examined, there was no significant evidence that selection had been effective. Values of S are highly positively correlated with both the number of rRNA operons and the number of tRNA genes. These results are consistent with the hypothesis that species exposed to selection for rapid growth have more rRNA operons, more tRNA genes and more strongly selected codon usage bias. For example, Clostridium perfringens, the species with the highest value of S, can have a generation time as short as 7 min.  相似文献   

15.
Codon usage in Tetrahymena and other ciliates   总被引:11,自引:0,他引:11  
Codon usage in ciliates was examined by analyzing the coding regions of 22 ciliate genes corresponding to a total of 26,142 nucleotides (8,714 codons). It was found that Tetrahymena, Paramecium and the hypotrichs (Oxytricha and Stylonychia) differed in which synonymous codons were used most frequently by their genes. In fact, the codon choices in highly expressed Tetrahymena genes were more similar to those of yeast genes than those of Paramecium genes. The ciliates do not appear to have unusually strong biases in codon usage frequency when compared to other protists such as yeast. The analysis of the Tetrahymena genes indicated that genes which are highly expressed during normal cell growth have a stronger bias towards using the "preferred" codons than those expressed at lower levels during growth or for brief periods during processes such as conjugation. This conforms to what is found in other protists.  相似文献   

16.
17.
Codon usage and gene expression.   总被引:36,自引:16,他引:20       下载免费PDF全文
L Holm 《Nucleic acids research》1986,14(7):3075-3087
The hypothesis that codon usage regulates gene expression at the level of translation is tested. Codon usage of Escherichia coli and phage lambda is compared by correspondence analysis, and the basis of this hypothesis is examined by connecting codon and tRNA distributions to polypeptide elongation kinetics. Both approaches indicate that if codon usage was random tRNA limitation would only affect the rarest tRNA species. General discrimination against their cognate codons indicates that polypeptide elongation rates are maintained constant. Thus, differences in expression of E. coli genes are not a consequence of their variable codon usage. The preference of codons recognized by the most abundant tRNAs in E. coli genes encoding abundant proteins is explained by a constraint on the cost of proof-reading.  相似文献   

18.
The geography of codon bias distributions over prokaryotic genomes and its impact upon chromosomal organization are analyzed. To this aim, we introduce a clustering method based on information theory, specifically designed to cluster genes according to their codon usage and apply it to the coding sequences of Escherichia coli and Bacillus subtilis. One of the clusters identified in each of the organisms is found to be related to expression levels, as expected, but other groups feature an over-representation of genes belonging to different functional groups, namely horizontally transferred genes, motility, and intermediary metabolism. Furthermore, we show that genes with a similar bias tend to be close to each other on the chromosome and organized in coherent domains, more extended than operons, demonstrating a role of translation in structuring bacterial chromosomes. It is argued that a sizeable contribution to this effect comes from the dynamical compartimentalization induced by the recycling of tRNAs, leading to gene expression rates dependent on their genomic and expression context.  相似文献   

19.
Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.  相似文献   

20.
Codon usage determines translation rate in Escherichia coli   总被引:42,自引:0,他引:42  
We wish to determine whether differences in translation rate are correlated with differences in codon usage or with differences in mRNA secondary structure. We therefore inserted a small DNA fragment in the lacZ gene either directly or flanked by a few frame-shifting bases, leaving the reading frame of the lacZ gene unchanged. The fragment was chosen to have "infrequent" codons in one reading frame and "common" codons in the other. The insert in these constructs does not seem to give mRNAs that are able to form extensive secondary structures. The translation time for these modified lacZ mRNAs was measured with a reproducibility better than plus or minus one second. We found that the mRNA with infrequent codons inserted has an approximately three-seconds longer translation time than the one with common codons. In another set of experiments we constructed two almost identical lacZ genes in which the lacZ mRNAs have the potential to generate stem structures with stabilities of about -75 kcal/mol. In this way we could investigate the influence of mRNA structure on translation rate. This type of modified gene was generated in two reading frames with either common or infrequent codons similar to our first experiments. We find that the yield of protein from these mRNAs is reduced, probably due to the action in vivo of an RNase. Nevertheless, the data do not indicate that there is any effect of mRNA secondary structure on translation rate. In contrast, our data persuade us that there is a difference in translation rate between infrequent codons and common codons that is of the order of sixfold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号