首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MazG is a nucleoside triphosphate pyrophosphohydrolase that hydrolyzes all canonical nucleoside triphosphates. The mazG gene located downstream from the chromosomal mazEF "addiction module," that mediated programmed cell death in Escherichia coli. MazG activity is inhibited by the MazEF complex both in vivo and in vitro. Enzymatic activity of MazG in vivo affects the cellular level of guanosine 3',5'-bispyrophosphate (ppGpp), synthesized by RelA under amino acid starvation. The reduction of ppGpp, caused by MazG, may extend the period of cell survival under nutritional stress. Here we describe the first crystal structure of active MazG from E. coli, which is composed of two similarly folded globular domains in tandem. Among the two putative catalytic domains, only the C-terminal domain has well ordered active sites and exhibits an NTPase activity. The MazG-ATP complex structure and subsequent mutagenesis studies explain the peculiar active site environment accommodating all eight canonical NTPs as substrates. In vivo nutrient starvation experiments show that the C terminus NTPase activity is responsible for the regulation of bacterial cell survival under nutritional stress.  相似文献   

2.
We have previously reported that mazEF, the first regulatable chromosomal 'addiction module' located on the Escherichia coli chromosome, downstream from the relA gene, plays a crucial role in the programmed cell death in bacteria under stressful conditions. It consists of a pair of genes encoding a stable toxin, MazF, and MazE, a labile antitoxin interacting with MazF to form a complex. The cellular target of MazF toxin was recently described to be cellular mRNA, which is degraded by this toxin. On the same operon, downstream to the mazEF genes, we found another open reading frame, which was called mazG. Recently, it was shown that the MazG protein has a nucleotide pyrophosphohydrolase activity. Here we show that mazG is being transcribed in the same polycistronic mRNA with mazEF. We also show that the enzymatic activity of MazG is inhibited by MazEF proteins. When the complex MazEF was added, the enzymatic activity of MazG was about 70% inhibited. We demonstrate that the enzymatic activity of MazG in vivo causes depletion of guanosine 3',5'-bispyrophosphate (ppGpp), synthesized by RelA under amino acid starvation conditions. Based on our results, we propose a model in which this third gene, which is unique for chromosomal addiction systems, has a function of limiting the deleterious activity of MazF toxin. In addition, MazG solves a frequently encountered biological problem: how to avoid the persistence of a toxic product beyond the time when its toxicity is useful to the survival of the population.  相似文献   

3.
MazG proteins form a widely conserved family among bacteria, but their cellular function is still unknown. Here we report that Thermotoga maritima MazG protein (Tm-MazG), the product of the TM0913 gene, has both nucleoside triphosphate pyrophosphohydrolase (NTPase) and pyrophosphatase activities. Tm-MazG catalyzes the hydrolysis of all eight canonical ribo- and deoxyribonucleoside triphosphates to their corresponding nucleoside monophosphates and PPi and subsequently hydrolyzes the resultant PPi to Pi. The NTPase activity with deoxyribonucleoside triphosphates as substrate is higher than corresponding ribonucleoside triphosphates. dGTP is the best substrate among the deoxyribonucleoside triphosphates, and GTP is the best among the ribonucleoside triphosphates. Both NTPase and pyrophosphatase activities were enhanced at higher temperatures and blocked by the alpha,beta-methyleneadenosine triphosphate, which cannot be hydrolyzed by Tm-MazG. Furthermore, PPi is an inhibitor for the Tm-MazG NTPase activity. Significant decreases in the NTPase activity and concomitant increases in the pyrophosphatase activity were observed when mutations were introduced at the highly conserved amino acid residues in Tm-MazG N-terminal region (E41Q/E42Q, E45Q, E61Q, R97A/R98A, and K118A). These results demonstrated that Tm-MazG has dual enzymatic functions, NTPase and pyrophosphatase, and that these two enzymatic activities are coordinated.  相似文献   

4.
5.
Mobile gene cassettes collectively contain a highly diverse pool of novel genes that encode many novel adaptive functions. In the non-clinical context, the function of almost all of the encoded proteins remains unknown despite the enormous size of this mobile gene pool. We have been characterizing cassette arrays by taking advantage of the fact that they cluster at discrete sites in chromosomes; even large arrays are thus recoverable in a relatively small number of clones in genomic libraries. In one assembled array of 116 cassettes from the marine bacterium Vibrio sp. DAT722, a putative MazG protein is encoded within the 21st cassette. Because MazG proteins are implicated in a number of cellular processes, including house-cleaning and stress survival, the presence of such a protein in a mobile cassette was noteworthy. Here we solve the crystal structure of this α-helical protein, and define both open and closed states of a new variant of the MazG family. Functional assays confirm that the protein is a dNTP pyrophosphohydrolase, with marked preferences for dCTP and dATP. We hypothesize that i MazG acts as a house-cleaning enzyme, preventing the incorporation of damaging non-canonical nucleotides into host-cell DNA.  相似文献   

6.
7.
Since the discovery of the first E. coli mutator gene, mutT, most of the mutations inducing elevated spontaneous mutation rates could be clearly attributed to defects in DNA repair. MutT turned out to be a pyrophosphohydrolase hydrolyzing 8-oxodGTP, thus preventing its incorporation into DNA and suppresing the occurrence of spontaneous AT-->CG transversions. Most of the bacterial mutator genes appeared to be evolutionarily conserved, and scientists were continuously searching for contribution of DNA repair deficiency in human diseases, especially carcinogenesis. Yet a human MutT homologue--hMTH1 protein--was found to be overexpressed rather than inactivated in many human diseases, including cancer. The interest in DNA repair contribution to human diseases exploded with the observation that germline mutations in mismatch repair (MMR) genes predispose to hereditary non-polyposis colorectal cancer (HNPCC). Despite our continuously growing knowledge about DNA repair we still do not fully understand how the mutator phenotype contributes to specific forms of human diseases.  相似文献   

8.
Era是细菌生长必须的一高度保守的GTPase。yggG是从大肠杆菌全基因组文库中钓取并克隆的Era结合蛋白基因,进一步的研究表明该基因在大肠杆菌中的表达与环境应激相关,提示yggG基因产物参与细菌的应激调控。为了阐明YggG蛋白与Era蛋白间的相互关系,利用所构建的双启动子表达载体pDH2-YggG-Ptac-Era在同一细胞中同时表达YggG与Era蛋白,并通过免疫共沉淀实验检测细菌裂解产物YggG与Era蛋白间的相互作用;在此基础上,构建并表达纯化了GST融合的Era蛋白氨基端截短肽和Era羧基端截短肽,通过GST Pull-down检测了Era不同功能区域与YggG蛋白间的相互作用。结果显示, Era/YggG 复合物仅存在于同时过表达Era和YggG蛋白的细菌细胞内,不诱导Era或者不诱导YggG蛋白过表达,均检测不到Era/YggG 复合物存在;纯化的GST不能Pull-down YggG蛋白,而纯化的GST融合的Era蛋白、Era氨基端截短肽及Era羧基端截短肽均可以Pull-down YggG蛋白;GST融合Era氨基端截短肽和GST融合的Era蛋白对YggG蛋白结合作用明显高于GST融合的Era蛋白羧基端截短肽。上述结果说明,YggG是一大肠杆菌Era结合蛋白,YggG与Era的氨基端和羧基端的结合活性存在差异。  相似文献   

9.
yggG是从大肠杆菌全基因组文库中钓取并克隆的Era结合蛋白基因,研究表明该基因表达的YggG294(amino acids 1-294)蛋白对宿主菌的生长具有强烈的抑制作用。为了阐明YggG与Era间的相互关系,构建可同时可控性表达Era和YggG294蛋白的双启动子表达载体。利用所构建的双启动子表达载体在同一细胞中同时可控性地表达YggG294与Era蛋白。结果显示,在不表达和少量表达YggG294的细菌细胞内,Era 的表达量与总蛋白量的比值随着诱导时间增加而增高,而YggG294大量表达的细菌内Era 的表达量与总蛋白量的比值基本保持不变;Era 蛋白的预表达对YggG294表达所引起的细菌生长率下降无影响。由此可以推论,YggG294的过表达引起宿主菌生长抑制进而影响了Era蛋白的进一步表达,而YggG294的过表达引起宿主菌生长抑制与YggG和Era蛋白间的相互作用无关  相似文献   

10.
Removal of pyrophosphate from dihydroneopterin triphosphate (DHNTP) is the second step in the pterin branch of the folate synthesis pathway. There has been controversy over whether this reaction requires a specific pyrophosphohydrolase or is a metal ion-dependent chemical process. The genome of Lactococcus lactis has a multicistronic folate synthesis operon that includes an open reading frame (ylgG) specifying a putative Nudix hydrolase. Because many Nudix enzymes are pyrophosphohydrolases, YlgG was expressed in Escherichia coli and characterized. The recombinant protein showed high DHNTP pyrophosphohydrolase activity with a K(m) value of 2 microM, had no detectable activity against deoxynucleoside triphosphates or other typical Nudix hydrolase substrates, required a physiological level (approximately 1 mM) of Mg(2+), and was active as a monomer. Essentially no reaction occurred without enzyme at 1 mM Mg(2+). Inactivation of ylgG in L. lactis resulted in DHNTP accumulation and folate depletion, confirming that YlgG functions in folate biosynthesis. We therefore propose that ylgG be redesignated as folQ. The closest Arabidopsis homolog of YlgG (encoded by Nudix gene At1g68760) was expressed in E. coli and shown to have Mg(2+)-dependent DHNTP pyrophosphohydrolase activity. This protein (AtNUDT1) was reported previously to have NADH pyrophosphatase activity in the presence of 5 mM Mn(2+) (Dobrzanska, M., Szurmak, B., Wyslouch-Cieszynska, A., and Kraszewska, E. (2002) J. Biol. Chem. 277, 50482-50486). However, we found that this activity is negligible at physiological levels of Mn(2+) and that, with 1 mM Mg(2+), AtNUDT1 prefers DHNTP and (deoxy) nucleoside triphosphates.  相似文献   

11.
X Zhang  Q Lu  M Inouye    C K Mathews 《Journal of bacteriology》1996,178(14):4115-4121
Bacteriophage T4 encodes nearly all of its own enzymes for synthesizing DNA and its precursors. An exception is nucleoside diphosphokinase (ndk gene product), which catalyzes the synthesis of ribonucleoside triphosphates and deoxyribonucleoside triphosphates (dNTPs) from the corresponding diphosphates. Surprisingly, an Escherichia coli ndk deletion strain grows normally and supports T4 infection. As shown elsewhere, these ndk mutant cells display both a mutator phenotype and deoxyribonucleotide pool abnormalities. However, after T4 infection, both dNTP pools and spontaneous mutation frequencies are near normal. An E. coli strain carrying deletions in ndk and pyrA and pyrF, the structural genes for both pyruvate kinases, also grows and supports T4 infection. We examined anaerobic E. coli cultures because of reports that in anaerobiosis, pyruvate kinase represents the major route for nucleoside triphosphate synthesis in the absence of nucleoside diphosphokinase. The dNTP pool imbalances and the mutator phenotype are less pronounced in the anaerobic than in the corresponding aerobic ndk mutant strains. Anaerobic dNTP pool data, which have not been reported before, reveal a disproportionate reduction in dGTP, relative to the other pools, when aerobic and anaerobic conditions are compared. The finding that mutagenesis and pool imbalances are mitigated in both anaerobic and T4-infected cultures provides strong, if circumstantial, evidence that the mutator phenotype of ndk mutant cells is a result of the dNTP imbalance. Also, the viability of these cells indicates the existence of a second enzyme system in addition to nucleoside diphosphokinase for nucleoside triphosphate synthesis.  相似文献   

12.
A clone overproducing diadenosine tetraphosphatase (diadenosine 5', 5'-P1, P4-tetraphosphate pyrophosphohydrolase) activity was isolated from an Escherichia coli cosmid library. Localization of the DNA region responsible for stimulation of this activity was achieved by deletion mapping and subcloning in various vectors. Maxicell experiments and immunological assays demonstrated that a 3.5-kilobase-pair DNA fragment carried the structural gene apaH encoding the E. coli diadenosine tetraphosphatase. The DNA coding strand was determined by cloning this fragment in both orientations in pUC plasmids. It was also shown that the overproduction of diadenosine tetraphosphatase decreased the dinucleoside tetraphosphate concentration in E. coli by a factor of 10.  相似文献   

13.
Escherichia coli possesses two DNA glycosylase/apurinic lyase activities with overlapping substrate specificities, endonuclease III and endonuclease VIII, that recognize and remove oxidized pyrimidines from DNA. Endonuclease III is encoded by the nth gene. Endonuclease VIII has now been purified to apparent homogeneity, and the gene, nei, has been cloned by using reverse genetics. The gene nei is located at 16 min on the E. coli chromosome and encodes a 263-amino-acid protein which shows significant homology in the N-terminal and C-terminal regions to five bacterial Fpg proteins. A nei partial deletion replacement mutant was constructed, and deletion of nei was confirmed by genomic PCR, activity analysis, and Western blot analysis. nth nei double mutants were hypersensitive to ionizing radiation and hydrogen peroxide but not as sensitive as mutants devoid of base excision repair (xth nfo). Single nth mutants exhibited wild-type sensitivity to X rays, while nei mutants were consistently slightly more sensitive than the wild type. Double mutants lacking both endonucleases III and VIII exhibited a strong spontaneous mutator phenotype (about 20-fold) as determined by a rifampin forward mutation assay. In contrast to nth mutants, which showed a weak mutator phenotype, nei single mutants behaved as the wild type.  相似文献   

14.
We have generated mutator strains of Bacillus anthracis Sterne by using directed gene knockouts to investigate the effect of deleting genes involved in mismatch repair, oxidative repair, and maintaining triphosphate pools. The single-knockout strains are deleted for mutS, mutY, mutM, or ndk. We also made double-knockout strains that are mutS ndk or mutY mutM. We have measured the levels of mutations in the rpoB gene that lead to the Rif(r) phenotype and have examined the mutational specificity. In addition, we examined the mutational specificity of two mutagens, 5-azacytidine and N-methyl-N'-nitro-N-nitroso-guanidine. The mutY and mutM single knockouts are weak mutators by themselves, but the combination of mutY mutM results in very high mutation rates, all due to G:C --> T:A transversions. The situation parallels that seen in Escherichia coli. Also, mutS knockouts are strong mutators and even stronger in the presence of a deletion of ndk. The number of sites in rpoB that can result in the Rif(r) phenotype by single-base substitution is more limited than in certain other bacteria, such as E. coli and Deinococcus radiodurans, although the average mutation rate per mutational site is roughly comparable. Hotspots at sites with virtually identical surrounding sequences are organism specific.  相似文献   

15.
16.
Cisplatin is undoubtedly one of the most common and successful anticancer drugs worldwide. Though its DNA-based mechanism of action is well established, the contribution of the proteome to this process remains unclear. The possible impact of particular Escherichia coli proteins on the cytostatic activity of cisplatin was the subject of this study. Our main focus was not only the "bottom-up" identification of novel cisplatin protein targets through LC/LC-MS/MS analysis, but also a label-free quantification of their regulation profile by spectral-counting. The regulation of two proteins, aconitate hydratase 2 and 60 kDa chaperonin 1, could be linked to a platinated amino acid in the protein sequence, whereas in the cases of 30S ribosomal protein S1 and enolase, it could be shown that cisplatin fragments are coordinated to an essential site for the functionality of the protein. Nucleoside triphosphate pyrophosphohydrolase (MazG) regulates the programmed cell death and was found to be platinated on the protein surface, which probably correlates with the established mode of action. A possible new chapter in the understanding of cisplatin's mechanism of action and its severe side effects is opened, since evidence is provided that platinated proteins are not only involved in cellular stress response but also in energy metabolism through glycolysis and catabolic processes, in gene regulatory mechanisms and protein synthesis.  相似文献   

17.
Era is a highly conserved GTPase essential for bacterial growth. Using a digoxigenin-labeled Era protein to screen a phage expression library of Escherichia coli genomic DNA, yggG, a gene that encodes a putative zinc metalloprotease was isolated and characterized. The deduced amino acid sequence of YggG showed high degrees of similarity to some reported heat shock proteins. In this study, the direct interaction between Era and YggG was confirmed, and it was found that the yggG gene, encoding a 25 kDa heat shock protein, was up-regulated at the mRNA level in partially defective Era GTPase mutants (era-1) and in E. coli cells overproducing Era-1. The delta yggG strain displayed the same growth rate as wild-type strain under normal growth conditions and after heat shock. Overexpression of Era-1 in the delta yggG strain resulted in a stronger growth-inhibitory effect than that in the wild-type strain, while coexpression of YggG partially restored the bacterial growth rate. The results indicated that YggG expression is significantly increased in response to stress caused by the Era-1 mutant protein in E. coli, thus promoting the growth of E. coli.  相似文献   

18.
The induction of mutations to valine resistance and to rifampin resistance occurs after UV irradiation in bacteria carrying a deletion through the polA gene (delta polA), showing that DNA polymerase I (PolI) is not an essential enzyme for this process. The PolI deletion strain showed a 7- to 10-fold-higher spontaneous mutation frequency than the wild type. The presence in the deletion strain of the 5'----3' exonuclease fragment on an F' episome caused an additional 10-fold increase in spontaneous mutation frequency, resulting in mutation frequencies on the order of 50- to 100-fold greater than wild type. The mutator effect associated with the 5'----3' exonuclease gene fragment together with much of the effect attributable to the polA deletion was blocked in bacteria carrying a umuC mutation. The mutator activity therefore appears to reflect constitutive SOS induction. Excision-proficient polA deletion strains exhibited increased sensitivity to the lethal effect of UV light which was only partially ameliorated by the presence of polA+ on an F' episome. The UV-induced mutation rate to rifampin resistance was marginally lower in delta polA bacteria than in bacteria carrying the polA+ allele. This effect is unlikely to be caused by the existence of a PolI-dependent mutagenic pathway and is probably an indirect effect caused by an alteration in the pattern of excision repair, since it did not occur in excision-deficient (uvrA) bacteria. An excision-deficient polA deletion strain possessed UV sensitivity similar to that of an isogenic strain carrying polA+ on an F' episome, showing that none of the functions of PolI are needed for postreplication repair in the absence of excision repair. Our data provide no evidence for a pathway of UV mutagenesis dependent on PolI, although it remains an open question whether PolI is able to participate when it is present.  相似文献   

19.
We have previously reported the identification of a DNA repair system in Escherichia coli for the prevention of the stable incorporation of noncanonical purine dNTPs into DNA. We hypothesized that the RdgB protein is active on 2'-deoxy-N-6-hydroxylaminopurine triphosphate (dHAPTP) as well as deoxyinosine triphosphate. Here we show that RdgB protein and RdgB homologs from Saccharomyces cerevisiae, mouse, and human all possess deoxyribonucleoside triphosphate pyrophosphohydrolase activity and that all four RdgB homologs have high specificity for dHAPTP and deoxyinosine triphosphate compared with the four canonical dNTPs and several other noncanonical (d)NTPs. Kinetic analysis reveals that the major source of the substrate specificity lies in changes in K(m) for the various substrates. The expression of these enzymes in E. coli complements defects that are caused by the incorporation of HAP and an endogenous noncanonical purine into DNA. Our data support a preemptive role for the RdgB homologs in excluding endogenous and exogenous modified purine dNTPs from incorporation into DNA.  相似文献   

20.
Abstract Conditional cold-sensitive mutations in Era, an essential Escherichia coli GTPase, were isolated. Localized random polymerase chain reaction (PCR) mutagenesis employing Taq and T7 DNA polymerases under error prone amplification conditions was exploited to generate mutations in the era gene. A plasmid exchange technique was used to identify conditional cold-sensitive mutations in Era that give rise to defective cell growth below 30 °C. Three recessive missense mutations in Era, N26S, A156D, and E200K, were isolated. All three mutations are located at residues conserved in Era homologues from Streptococcus mutans and Coxiella burnetii .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号