首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis   总被引:1,自引:0,他引:1  
Tumor necrosis factor-alpha (TNF-alpha) and TNF receptors (TNFR) are members of the growing TNF ligand and receptor families that are involved in immune regulation. The present report will focus on the role of the prototypic ligand TNF and its two receptors, TNFR1 and TNFR2, in viral pathogenesis. Although TNF was reported years ago to modulate viral infections, recent findings on the molecular pathways involved in TNFR signaling have allowed a better understanding of the molecular interactions between cellular and viral factors within the infected cell. The interactions of viral proteins with intracellular components downstream of the TNFR have highlighted at the molecular level how viruses can manipulate the cellular machinery to escape the immune response and to favor the spread of the infection. We will review here the role of TNF and TNFR in immune response and the role of TNF and TNFR signaling in viral pathogenesis.  相似文献   

2.
Tumor necrosis factor (TNF) elicits its biological activities by stimulation of two receptors, TNFR1 and TNFR2, both belonging to the TNF receptor superfamily. Whereas TNFR1-mediated signal transduction has been intensively studied and is understood in detail, especially with respect to activation of the classical NFκB pathway, cell death induction, and MAP kinase signaling, TNFR2-associated signal transduction is poorly defined. Here, we demonstrate in various tumor cell lines and primary T-cells that TNFR2, but not TNFR1, induces activation of the alternative NFκB pathway. In accord with earlier findings demonstrating that only membrane TNF, but not soluble TNF, properly activates TNFR2, we further show by use of TNFR1- and TNFR2-specific mutants of soluble TNF and membrane TNF that soluble ligand trimers fail to activate the alternative NFκB pathway. In accord with the known inhibitory role of TRAF2 in the alternative NFκB pathway, TNFR2-, but not TNFR1-specific TNF induced depletion of cytosolic TRAF2. Thus, we identified activation of the alternative NFκB pathway as a TNF signaling effect that can be specifically assigned to TNFR2 and membrane TNF.  相似文献   

3.
Regulatory roles and molecular signaling of TNF family members in osteoclasts   总被引:12,自引:0,他引:12  
Feng X 《Gene》2005,350(1):1-13
The tumor necrosis factor (TNF) family has been one of the most intensively studied families of proteins in the past two decades. The TNF family constitutes 19 members that mediate diverse biological functions in a variety of cellular systems. The TNF family members regulate cellular functions through binding to membrane-bound receptors belonging to the TNF receptor (TNFR) family. Members of the TNFR family lack intrinsic kinase activity and thus they initiate signaling by interacting intracellular signaling molecules such as TNFR associated factor (TRAF), TNFR associated death domain (TRADD) and Fas-associated death domain (FADD). In bone metabolism, it has been shown that numerous TNF family members including receptor activator of nuclear factor kappaB ligand (RANKL), TNF-alpha, Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) play pivotal roles in the differentiation, function, survival and/or apoptosis of osteoclasts, the principal bone-resorbing cells. These TNF family members not only regulate physiological bone remodeling but they are also implicated in the pathogenesis of various bone diseases such as osteoporosis and bone loss in inflammatory conditions. This review will focus on our current understanding of the regulatory roles and molecular signaling of these TNF family members in osteoclasts.  相似文献   

4.
The proinflammatory cytokine Tumor Necrosis Factor (TNF) exists as a homotrimer, capable of binding three receptor molecules. However, signal competent ligand/receptor complexes form large clusters, likely to be stabilized by additional molecular interactions. Both TNF receptors, TNFR1 and TNFR2, contain four cysteine rich domains (CRD) in their extracellular parts. Previous work showed that the membrane distal CRD1 carries a homophilic interaction domain. Here, we investigated the functional role of CRD1 and its two submodules, A1CRD1 and B2CRD1, in a TNFR1-Fas chimera model system. Removal of CRD1 abolishes TNF binding. In line with these data, molecular dynamics simulations suggest that B2CRD1 of TNFR1 serves as a scaffold to stabilize CRD2 in a conformation necessary for high affinity ligand binding. Deletion of only the N-terminal half of CRD1 (ΔA1CRD1) of TNFR1 marginally affects ligand binding but abrogates responsiveness towards soluble TNF and reduces effectiveness as a dominant negative inhibitor of wild type TNFR1. A TNFR1-derived molecule containing the CRD1 from TNFR2 also shows reduced responsiveness to soluble TNF. These data strongly suggest that CRD1 is not only crucially involved in multimerization of unligated receptors, but is also directly involved in formation of signal competent ligand/receptor clusters, thereby controlling receptor responsiveness.  相似文献   

5.
Zhaoqian Su  Yinghao Wu 《Proteins》2020,88(5):698-709
The interactions between tumor necrosis factors (TNFs) and their corresponding receptors (TNFRs) play a pivotal role in inflammatory responses. Upon ligand binding, TNFR receptors were found to form oligomers on cell surfaces. However, the underlying mechanism of oligomerization is not fully understood. In order to tackle this problem, molecular dynamics (MD) simulations have been applied to the complex between TNF receptor-1 (TNFR1) and its ligand TNF-α as a specific test system. The simulations on both all-atom (AA) and coarse-grained (CG) levels achieved the similar results that the extracellular domains of TNFR1 can undergo large fluctuations on plasma membrane, while the dynamics of TNFα-TNFR1 complex is much more constrained. Using the CG model with the Martini force field, we are able to simulate the systems that contain multiple TNFα-TNFR1 complexes with the timescale of microseconds. We found that complexes can aggregate into oligomers on the plasma membrane through the lateral interactions between receptors at the end of the CG simulations. We suggest that this spatial organization is essential to the efficiency of signal transduction for ligands that belong to the TNF superfamily. We further show that the aggregation of two complexes is initiated by the association between the N-terminal domains of TNFR1 receptors. Interestingly, the cis-interfaces between N-terminal regions of two TNF receptors have been observed in the previous X-ray crystallographic experiment. Therefore, we provide supportive evidence that cis-interface is of functional importance in triggering the receptor oligomerization. Taken together, our study brings insights to understand the molecular mechanism of TNF signaling.  相似文献   

6.
Most members of the tumor necrosis factor ligand family form noncovalently linked homotrimers, capable to bind up to three molecules of the respective membrane receptors. For several receptors a membrane distal homophilic interaction domain has been identified, called pre-ligand binding assembly domain. Accordingly, affinity values determined by typical equilibrium binding studies are likely to be influenced by avidity effects. Using our recently introduced covalently stabilized TNF (single chain TNF, scTNF), we have here investigated receptor–ligand binding stoichiometry in our well characterized system of TNFR–Fas chimeras. We produced scTNF derivatives with functionally deleted individual receptor binding sites, resulting in TNF mutants capable to only bind to one or two receptor molecules, rather than three. Equilibrium binding affinity studies on ice with these molecules revealed no significant changes after a single receptor binding site had been functionally deleted. In contrast, functional abrogation of two receptor binding sites showed a strong decrease in both, affinity and bioactivity on TNFR2–Fas. In contrast, TNFR1–Fas ligand binding and receptor activation was only affected after functional deletion of all three receptor binding sites. Our data demonstrate pivotal differences in ligand/receptor interactions between TNFR1–Fas and TNFR2–Fas, arguing for avidity effects important for TNF binding and downstream signaling of TNFR2, but to a lesser extent of TNFR1. These results are supported by data revealed from chemical crosslinking experiments suggesting the existence of preformed TNFR–Fas homodimers.  相似文献   

7.
TNF receptor subtype signalling: differences and cellular consequences   总被引:20,自引:0,他引:20  
  相似文献   

8.
Introduction: Somatostatin is a mediator of immune functions and has been used as an antineoplastic agent in animal models and human neoplasias. We have demonstrated that Octreotide inhibits only LPS induced secretion of proinflammatory cytokines including TNFa by Kupffer cells (KC). We, therefore, tested the hypothesis that somatostatin modulates the expression of tumor necrosis factor alpha (TNF?) receptors and apoptosis of KC. Methods: Rat KC were isolated by centrifugal elutriation. TNFR1 and TNFR2 expression was studied by RT-PCR, quantitative PCR, Western Blot and immunofluorescence before and after Octreotide pre-incubation. Apoptosis was assessed by quantitative measurement of cytoplasmic histone-associated DNA fragments. TNFa mRNA expression was assessed by semiquantitative PCR and TNFa was measured in cell supernatants by ELISA. Results: TNFR1 and TNFR2 mRNA are constitutively expressed in KC. Octreotide incubation increased both receptors expression with a peak at 6?h and return to basal levels at 24?h. TNFR1 was mostly influenced. However, only increase in TNFR2 protein was identified, whereas a band at 90 kD was present instead of a band at 55 kD as expected for TNFR1. TNF? mRNA expression was inhibited by Octreotide and a significant inhibition was observed at 48?h. TNF had no effect on KC apoptosis, whereas Octreotide significantly increased their apoptosis, and this effect was not influenced by co-incubation with TNFa. Conclusion: TNFR1 and TNFR2 are constitutively expressed in KC and their expression is strongly increased by somatostatin. Moreover, somatostatin increases KC apoptosis. These findings may in part explain the antineoplasmatic effect of somatostatin.  相似文献   

9.
The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.  相似文献   

10.
11.
Tumor necrosis factor (TNF) signaling is mediated via two distinct receptors, TNFR2 and TNFR1, which shows partially overlapping signaling mechanisms and biological roles. In the present study, TNFR2 and TNFR1 signal transduction mechanisms involved in activation of NFkappaB and CMV promoter-enhancer were compared with respect to their susceptibility towards inhibitors of intracellular signaling. For this, we used SW480 cells, where we have shown that TNF-signaling can occur independently through each of the two receptors. The TNFR1 response was inhibited by D609, bromophenacyl bromide (BPB), nordihydroguararetic acid (NDGA), and by sodium salicylate, while TNFR2-mediated activation of NFkappaB and CMV promoter-enhancer was resistant to these compounds. The signaling mechanisms known to be affected by these inhibitors include phospholipases as well as redox- and pH-sensitive intracellular components. Our results imply that TNFR2 signaling involved in NFkappaB activation proceeds independently of these inhibitor-sensitive signaling components, indicating distinct signaling pathways not shared with TNFR1.  相似文献   

12.
We have previously shown that two tumor necrosis factor (TNF) receptors (TNFR) exhibit antagonistic functions during neurodegenerative processes in vivo with TNFR1 aggravating and TNFR2 reducing neuronal cell loss, respectively. To elucidate the neuroprotective signaling pathways of TNFR2, we investigated glutamate-induced excitotoxicity in primary cortical neurons. TNF-expressing neurons from TNF-transgenic mice were found to be strongly protected from glutamate-induced apoptosis. Neurons from wild type and TNFR1(-/-) mice prestimulated with TNF or agonistic TNFR2-specific antibodies were also resistant to excitotoxicity, whereas TNFR2(-/-) neurons died upon glutamate and/or TNF exposures. Both protein kinase B/Akt and nuclear factor-kappa B (NF-kappa B) activation were apparent upon TNF treatment. Both TNFR1 and TNFR2 induced the NF-kappa B pathway, yet with distinguishable kinetics and upstream activating components, TNFR1 only induced transient NF-kappa B activation, whereas TNFR2 facilitated long term phosphatidylinositol 3-kinase-dependent NF-kappa B activation strictly. Glutamate-induced triggering of the ionotropic N-methyl-D-aspartate receptor was required for the enhanced and persistent phosphatidylinositol 3-kinase-dependent NF-kappa B activation by TNFR2, indicating a positive cooperation of TNF and neurotransmitter-induced signal pathways. TNFR2-induced persistent NF-kappa B activity was essential for neuronal survival. Thus, the duration of NF-kappa B activation is a critical determinant for sensitivity toward excitotoxic stress and is dependent on a differential upstream signal pathway usage of the two TNFRs.  相似文献   

13.
CD4(+) T cell responses and macrophage activation are essential components of schistosome egg-induced granuloma formation. Previous studies implicated tumour necrosis factor (TNF) as a potential mediator of macrophage recruitment and activation during schistosome infection. Here we demonstrate that signalling by TNF and its receptors can influence granuloma formation, but is ultimately dispensable for granuloma formation in this system. However, we identify a previously unrecognised role for TNF in limiting hepatocellular damage in response to schistosome eggs. Further, we show that this activity of TNF is independent of TNF receptors (TNFR1 and TNFR2). Taken together, these data suggest that additional, as yet unrecognised receptors exist for TNF and that these receptors are capable of mediating important pathological effects in the liver. Finally, we provide evidence that TNF plays an unexpected role in maintaining adult schistosome viability in the portal system.  相似文献   

14.
Tumour necrosis factor-alpha (TNFalpha) is a multifunctional cytokine that exerts a myriad of biological actions in numerous different tissues including adipocytes through its two distinct cell surface receptors. To address the role of each TNF receptor in the biological actions of TNFalpha in adipocytes, we have developed four new preadipocyte cell lines. These were established from wild type controls (TNFR1(+/+)R2(+/+)) and from mice lacking TNFR1 (TNFR1(-/-)), TNFR2 (TNFR2(-/-)) or both (TNFR1(-/-)R2(-/-)). All four new cell lines can fully differentiate to form mature adipocytes, under appropriate culture conditions, as judged by cell morphology, expression of multiple adipogenic markers and the ability to mediate agonist-stimulated lipolysis and insulin-stimulated glucose transport. In wild type (TNFR1(+/+)R2(+/+)) and TNFR2(-/-) adipocytes, TNFalpha stimulated lipolysis and inhibited insulin-stimulated glucose transport as well as insulin receptor autophosphorylation. In contrast, these activities were completely lost in the TNFR1(-/-)R2(-/-) and TNFR1(-/-) cells. Taken together, these studies demonstrate that TNFalpha-induced lipolysis, as well as inhibition of insulin-stimulated glucose transport are predominantly mediated by TNFR1 and that the presence of TNFR2 is not necessary for these functions. This new experimental system promises to be useful in dissecting the molecular pathways activated by each TNF receptor in mediating the biological functions of TNFalpha in differentiated adipocytes.  相似文献   

15.
Introduction: Somatostatin is a mediator of immune functions and has been used as an antineoplastic agent in animal models and human neoplasias. We have demonstrated that Octreotide inhibits only LPS induced secretion of proinflammatory cytokines including TNFa by Kupffer cells (KC). We, therefore, tested the hypothesis that somatostatin modulates the expression of tumor necrosis factor alpha (TNFα) receptors and apoptosis of KC.

Methods: Rat KC were isolated by centrifugal elutriation. TNFR1 and TNFR2 expression was studied by RT-PCR, quantitative PCR, Western Blot and immunofluorescence before and after Octreotide pre-incubation. Apoptosis was assessed by quantitative measurement of cytoplasmic histone-associated DNA fragments. TNFa mRNA expression was assessed by semiquantitative PCR and TNFa was measured in cell supernatants by ELISA.

Results: TNFR1 and TNFR2 mRNA are constitutively expressed in KC. Octreotide incubation increased both receptors expression with a peak at 6?h and return to basal levels at 24?h. TNFR1 was mostly influenced. However, only increase in TNFR2 protein was identified, whereas a band at 90 kD was present instead of a band at 55 kD as expected for TNFR1. TNFα mRNA expression was inhibited by Octreotide and a significant inhibition was observed at 48?h. TNF had no effect on KC apoptosis, whereas Octreotide significantly increased their apoptosis, and this effect was not influenced by co-incubation with TNFa.

Conclusion: TNFR1 and TNFR2 are constitutively expressed in KC and their expression is strongly increased by somatostatin. Moreover, somatostatin increases KC apoptosis. These findings may in part explain the antineoplasmatic effect of somatostatin.  相似文献   

16.
Chan FK 《Cytokine》2007,37(2):101-107
The tumor necrosis factor (TNF) family of cytokines and their receptors regulates many areas of metazoan biology. Specifically, this cytokine-receptor family plays crucial roles in regulating myriad aspects of immune development and functions. Disruption of ligand-receptor interaction or downstream signal transduction components in the TNF family often leads to pathological conditions. Historically, members of the TNF receptor family (TNFRs) were thought to exist as monomeric receptor chains prior to stimulation. Binding of the trimeric ligand then induces the trimerization of the receptors and activation of downstream signaling. However, recent evidence indicates that many TNFRs exist as pre-assembled oligomers on the cell surface. Pre-ligand assembly of TNFR oligomers is mediated by the pre-ligand assembly domain (PLAD), which resides within the membrane distal cysteine-rich domain of the receptors. Growing evidence indicates that PLAD-mediated receptor association regulates cellular responses to TNF-like cytokines, especially in cells of the immune system. Thus, targeting pre-ligand assembly may offer new possibilities for therapeutic intervention in different pathological conditions involving TNF-like cytokines.  相似文献   

17.
Tumour necrosis factor (TNF) ligand members and their associated TNF receptor (TNFR) superfamilies have many diverse physiological roles. TNF is thought to play a critical role in the pathophysiology of a range of diseases including refractory asthma, sepsis, ankylosing spondylitis, lupus, type II diabetes, multiple sclerosis and psoriasis. The recent continued expansion of the novel anti-TNF therapeutic agents (etanercept and infliximab) has seen major improvements in the treatment of some inflammatory-based human diseases including notably rheumatoid arthritis and Crohn’s disease, with other conditions currently being trialled using anti-TNF agents. The cellular signalling machinery used by TNFRs to achieve their many cellular responses are discussed, as is the gonadotrophin-releasing hormone (GnRH) receptor signalling mechanisms. TNF is known to have many actions throughout the body including effects on the hypothalamic-pituitary-adrenal/gonadal axes, with many anti-gonadotrophic effects including a role in the development of endometriosis. These interactions between TNF, GnRH and gonadotrophs are discussed. Special issue article in honor of George Fink.  相似文献   

18.
Cerebral ischemia induces a rapid and dramatic up-regulation of tumor necrosis factor (TNF) protein and mRNA, but the cellular sources of TNF in the ischemic brain have not been defined. The diverse activities of TNF are mediated via ligand interaction with two distinct receptors, p55 and p75, which activate separate intracellular signal transduction pathways, leading to distinct biological effects. Since the effects of cerebral ischemia on TNF receptor (TNFR) expression are unknown, we examined the cellular localization and protein expression of TNF and its two receptors in the rat cerebral cortex in response to permanent middle cerebral artery (MCA) occlusion. The results indicate that focal. cerebral ischemia up-regulates expression of TNF and both TNFRs within the ischemic cortex. The most abundant type of TNF immunoreactivity (IR) was a punctate and filamentous pattern of transected cellular processes; however, cell bodies of neurons, astrocytes, and microglia, as well as infiltrating polymorphonuclear (PMN) leukocytes also showed TNF IR. Brain vasculature displayed TNF IR not only within endothelial cells but also in the perivascular space. MCA occlusion induced significant up-regulation of TNF receptors, with p55 IR appearing within 6 hr, significantly before the appearance of p75 IR at 24 hr after the onset of ischemia. Since p55 has been implicated in transducing cytotoxic signalling of TNF, these results support the proposed injurious role of excessive TNF produced during the acute response to cerebral ischemia.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号