首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protoporphyrinogen oxidase, an enzyme which catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX in yeast cells, has been found in several mammalian tissues. It has been extracted from rat liver mitochondria by sonication in the presence of salt and detergent and partially purified. The enzyme is similar in many respects to yeast protoporphyrinogen oxidase. Based on its behavior on Sephadex G-200 the molecular weight of the enzyme is approximately 35,000. Catalysis by protoporphyrinogen oxidase was specific for proteoporphyrinogen IX (apparent Km of 11 muM) and proceeded maximally at pH 8.6 to 8.7. The effect of temperature on enzyme activity plotted according to Arrhenius gave a value of E of 9,100 calories per mol. Enzyme activity was inhibited in the presence of high salt concentrations and temperatures above 45 degrees. Oxygen was essential for protoporphyrinogen oxidase activity and an alternative elevtron acceptor has not yet been found. No requirement for a metal or other cofactor could be demonstrated. The presence of monothiol groups was indicated; however, it is not known whether the thiol groups are involved directly in the binding of substrate to the enzyme.  相似文献   

2.
A new spectrophotometric assay for protoporphyrinogen oxidase activity has been developed, involving enzymatic generation of protoporphyrinogen in the incubation medium. This assay, more sensitive and reliable than those previously described, can be used to measure this activity in yeast mitochondrial membranes, rat liver mitochondria and E. coli membranes. By measuring protoporphyrinogen oxidase activity in different wild type and heme-mutant yeast strains, it was shown that 1) one heme-mutant was totally lacking this activity, 2) different factors might control its level in yeast.  相似文献   

3.
4.
Plant protoporphyrinogen oxidase is of particular interest since it is the last enzyme of the common branch for chlorophyll and heme biosynthetic pathways. In addition, it is the target enzyme for diphenyl ether-type herbicides, such as acifluorfen. Two distinct methods were used to investigate the localization of this enzyme within Percoll-purified spinach chloroplasts. We first assayed the enzymatic activity by spectrofluorimetry and we analyzed the specific binding of the herbicide acifluorfen, using highly purified chloroplast fractions. The results obtained give clear evidence that chloroplast protoporphyrinogen oxidase activity is membrane-bound and is associated with both chloroplast membranes, i.e. envelope and thylakoids. Protoporphyrinogen oxidase specific activity was 7-8 times higher in envelope membranes than in thylakoids, in good agreement with the number of [3H]acifluorfen binding sites in each membrane system: 21 and 3 pmol/mg protein, respectively, in envelope membranes and thylakoids. On a total activity basis, 25% of protoporphyrinogen oxidase activity were associated with envelope membranes. The presence of protoporphyrinogen oxidase in chloroplast envelope membranes provides further evidence for a role of this membrane system in chlorophyll biosynthesis. In contrast, the physiological significance of the enzyme associated with thylakoids is still unknown, but it is possible that thylakoid protoporphyrinogen oxidase could be involved in heme biosynthesis.  相似文献   

5.
We describe fluorometric assays for two enzymes of the heme pathway, coproporphyrinogen oxidase and protoporphyrinogen oxidase. Both assays are based on measurement of protoporphyrin IX fluorescence generated from coproporphyrinogen III by the two consecutive reactions catalyzed by coproporphyrinogen oxidase and protoporphyrinogen oxidase. Both enzymatic activities are measured by recording protoporphyrin IX fluorescence increase in air-saturated buffer in the presence of EDTA (to inhibit ferrochelatase that can further metabolize protoporphyrin IX) and in the presence of dithiothreitol (that prevents nonenzymatic oxidation of porphyrinogens to porphyrins). Coproporphyrinogen oxidase (limiting) activity is measured in the presence of a large excess of protoporphyrinogen oxidase provided by yeast mitochondrial membranes isolated from commercial baker's yeast. These membranes are easy to prepare and are stable for at least 1 year when kept at -80 degrees C. Moreover they ensure maximum fluorescence of the generated protoporphyrin (solubilization effect), avoiding use of a detergent in the incubation medium. The fluorometric protoporphyrinogen oxidase two-step assay is closely related to that already described (J.-M. Camadro, D. Urban-Grimal, and P. Labbe, 1982, Biochem. Biophys. Res. Commun. 106, 724-730). Protoporphyrinogen is enzymatically generated from coproporphyrinogen by partially purified yeast coproporphyrinogen oxidase. The protoporphyrinogen oxidase reaction is then initiated by addition of the membrane fraction to be tested. However, when very low amounts of membrane are used, low amounts of Tween 80 (less than 1 mg/ml) have to be added to the incubation mixture to solubilize protoporphyrin IX in order to ensure optimal fluorescence intensity. This detergent has no effect on the rate of the enzymatic reaction when used at concentrations less than 2 mg/ml. Activities ranging from 0.1 to 4-5 nmol protoporphyrin formed per hour per assay are easily and reproducibly measured in less than 30 min.  相似文献   

6.
7.
The oxidation of protoporphyrinogen IX to protoporphyrin IX in yeast cells is enzyme-dependent. The enzyme, protoporphyrinogen oxidase, associated with purified mitochondria isolated from Saccharomyces cerevisiae was solubilized by sonic treatment in the presence of detergent and partially purified. The molecular weight of the enzyme was 180,000 plus or minus 18,000. The purified preparation could be stored at -20 degrees in the presence of 20% glycerol for several months without loss of activity. Enzyme activity was destroyed by heating above 40 degrees and by proteolytic digestion and irreversible inactivation occurred outside the pH range of 4.0 to 9.5. The pH optimum of the enzymic reaction was 7.45 and the value of the Michaelis constant was approximately 4.8 muM. Protoporphyrinogen oxidase did not catalyse the oxidation of coproporphyrinogen I or III or uroporphyrinogen I or III and the rate of enzymic oxidation of mesoporphyrinogen IX was less than 20% of that observed with protoporphyrinogen IX. The presence of thiol groups in the enzyme system was indicated but no metal ion or other cofactor requirement was demonstrated. Enzyme activity was insensitive to cyanide, 2,4-dinitrophenol, and azide whereas it was inhibited in the presence of Cu-2+ or Co-2+ ions, high ionic strength, heme, or hemin.  相似文献   

8.
In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.  相似文献   

9.
The penultimate step of haem biosynthesis, the oxidation of protoporphyrinogen to protoporphyrin, was examined with purified murine hepatic protoporphyrinogen oxidase (EC 1.3.3.4) in detergent solution. The kinetic parameters for the two-substrate (protoporphyrinogen and oxygen) reaction were determined. The limiting Km for protoporphyrinogen when oxygen is saturating is 6.6 microM, whereas the Km for oxygen with saturating concentrations of protoporphyrinogen is 125 microM. The kcat. for the overall reaction is 447 h-1. The ratio of kcat. to the Km for protoporphyrinogen is approx. 20-fold greater than the kcat./Km,O2 ratio. The ratio of protoporphyrin formed to dioxygen consumed is 1:3. Ubiquinone-6, ubiquinone-10 and dicoumarol stimulate protoporphyrinogen oxidase activity at low concentrations (less than 15 microM), whereas coenzyme Q0 and menadione show no activation at these concentrations. Above 30 microM, all five quinones inhibit the enzyme activity. FAD does not significantly affect the activity of the enzyme. Bilirubin, a product of haem catabolism, is shown to be a competitive inhibitor of the penultimate enzyme of the haem-biosynthetic pathway, protoporphyrinogen oxidase, with a calculated Ki of 25 microM. The terminal enzyme of haem-biosynthetic pathway, namely ferrochelatase, is not inhibited by bilirubin at concentrations over double the Ki value for the oxidase. In contrast with other enzymic systems, the toxicity of bilirubin is not reversed by binding to albumin.  相似文献   

10.
Tetrapyrroles are ubiquitous molecules in nearly all living organisms. Heme, an iron-containing tetrapyrrole, is widely distributed in nature, including most characterized aerobic and facultative bacteria. A large majority of bacteria that contain heme possess the ability to synthesize it. Despite this capability and the fact that the biosynthetic pathway has been well studied, enzymes catalyzing at least three steps have remained "missing" in many bacteria. In the current work, we have employed comparative genomics via the SEED genomic platform, coupled with experimental verification utilizing Acinetobacter baylyi ADP1, to identify one of the missing enzymes, a new protoporphyrinogen oxidase, the penultimate enzyme in heme biosynthesis. COG1981 was identified by genomic analysis as a candidate protein family for the missing enzyme in bacteria that lacked HemG or HemY, two known protoporphyrinogen oxidases. The predicted amino acid sequence of COG1981 is unlike those of the known enzymes HemG and HemY, but in some genomes, the gene encoding it is found neighboring other heme biosynthetic genes. When the COG1981 gene was deleted from the genome of A. baylyi, a bacterium that lacks both hemG and hemY, the organism became auxotrophic for heme. Cultures accumulated porphyrin intermediates, and crude cell extracts lacked protoporphyrinogen oxidase activity. The heme auxotrophy was rescued by the presence of a plasmid-borne protoporphyrinogen oxidase gene from a number of different organisms, such as hemG from Escherichia coli, hemY from Myxococcus xanthus, or the human gene for protoporphyrinogen oxidase.  相似文献   

11.
The use of herbicides to control undesirable vegetation has become a universal practice. For the broad application of herbicides the risk of damage to crop plants has to be limited. We introduced a gene into the genome of tobacco (Nicotiana tabacum) plants encoding the plastid-located protoporphyrinogen oxidase of Arabidopsis, the last enzyme of the common tetrapyrrole biosynthetic pathway, under the control of the cauliflower mosaic virus 35S promoter. The transformants were screened for low protoporphyrin IX accumulation upon treatment with the diphenyl ether-type herbicide acifluorfen. Leaf disc incubation and foliar spraying with acifluorfen indicated the lower susceptibility of the transformants against the herbicide. The resistance to acifluorfen is conferred by overexpression of the plastidic isoform of protoporphyrinogen oxidase. The in vitro activity of this enzyme extracted from plastids of selected transgenic lines was at least five times higher than the control activity. Herbicide treatment that is normally inhibitory to protoporphyrinogen IX oxidase did not significantly impair the catalytic reaction in transgenic plants and, therefore, did not cause photodynamic damage in leaves. Therefore, overproduction of protoporphyrinogen oxidase neutralizes the herbicidal action, prevents the accumulation of the substrate protoporphyrinogen IX, and consequently abolishes the light-dependent phytotoxicity of acifluorfen.  相似文献   

12.
Protoporphyrinogen oxidase has been solubilized from plasma membranes of Desulfovibrio gigas. The enzyme was purified to apparent homogeneity with single silver-stained protein bands on isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. This protoporphyrinogen oxidase has a molecular weight (Mr) of 148,000 and is composed of three dissimilar subunits of Mrs 12,000, 18,500, and 57,000, which are held together by sulfhydryl bonds. Unlike other protoporphyrinogen oxidases, which use molecular oxygen as an electron acceptor, this enzyme does not couple to oxygen. The protoporphyrinogen oxidase donates electrons to 2,6-dichlorophenol-indophenol but not to NAD+, NADP+, flavin adenine dinucleotide, or flavin mononucleotide. The natural physiological electron acceptor of the protoporphyrinogen oxidase from D. gigas is unknown. By using 2,6-dichlorophenol-indophenol as the electron acceptor, the Km and Vmax values for oxidation of protoporphyrinogen were determined to be 21 microM and 8.38 nmol/min per 70 micrograms of protein, respectively. The catalytic rate constant, Kcat, was calculated to be 17.7 mol of protoporphyrin formed per mole of enzyme per min of incubation, and the Kcat/Km was 0.84. Energies of activation were calculated from Arrhenius plots with 7,429 cal (ca. 31,080 J)/mol per degree below 10 degrees C and 1,455 cal (ca. 6,088, J)/mol per degree above 10 degrees C. Optimum enzyme activity was at 23 degrees C, and inhibition was observed with both N-ethylmaleimide and iodoacetamide.  相似文献   

13.
The nuclear gene OXA1 is essential for respiratory growth in yeast. It codes for a chaperon-like protein, and has pleiotropic effects on the assembly of cytochrome c oxidase and ATP synthase of the mitochondrial respiratory chain. To study respiratory complex formation in plants, we have cloned a homolog of the yeast oxa1 in Arabidopsis thaliana , OXA1At , by functional complementation of a yeast oxa1 mutant. OXA1At is a single copy gene and appears to be constitutively expressed in A. thaliana . Although OXA1At encodes a protein sharing only 30% amino acid identity with the yeast Oxa1 protein, hydrophobic domains likely corresponding to trans -membrane domains are strictly conserved. Cytochrome spectra and measurements of respiratory activities show that replacement of the yeast Oxa1 protein with the A. thaliana homolog leads to correct assembly and activity of cytochrome c oxidase, but to partial restoration of ATPase activity. Our results suggest that the Oxa1At protein is essential for the respiratory complex assembly in A. thaliana , and that genes involved in mitochondrial multiprotein complex formation can be conserved between plants and other organisms.  相似文献   

14.
Diphenyl ether herbicides induce an accumulation of protoporphyrin IX in plant tissues. By analogy to human porphyria, the accumulation could be attributed to decreased (Mg or Fe)-chelatase or protoporphyrinogen oxidase activities. Possible effects of acifluorfen-methyl on these enzymes were investigated in isolated corn (maize, Zea mays) etioplasts, potato (Solanum tuberosum) and mouse mitochondria, and yeast mitochondrial membranes. Acifluorfen-methyl was strongly inhibitory to protoporphyrinogen oxidase activities whatever their origins [concn. causing 50% inhibition (IC50) = 4 nM for the corn etioplast enzyme]. By contrast, it was roughly 100,000 times less active on (Mg or Fe)-chelatase activities (IC50 = 80-100 microM). Our results lead us to propose protoporphyrinogen oxidase as a cellular target for diphenyl ether herbicides.  相似文献   

15.
Jacobs JM  Jacobs NJ 《Plant physiology》1993,101(4):1181-1187
We have investigated the formation of porphyrin intermediates by isolated barley (Hordeum vulgare) plastids incubated for 40 min with the porphyrin precursor 5-aminolevulinate and in the presence and absence of a diphenylether herbicide that blocks protoporphyrinogen oxidase, the enzyme in chlorophyll and heme synthesis that oxidizes protoporphyrinogen IX to protoporphyrin IX. In the absence of herbicide, about 50% of the protoporphyrin IX formed was found in the extraplastidic medium, which was separated from intact plastids by centrifugation at the end of the incubation period. In contrast, uroporphyrinogen, an earlier intermediate, and magnesium protoporphyrin IX, a later intermediate, were located mainly within the plastid. When the incubation was carried out in the presence of a herbicide that inhibits protoporphyrinogen oxidase, protoporphyrin IX formation by the plastids was completely abolished, but large amounts of protoporphyrinogen accumulated in the extraplastidic medium. To detect extraplastidic protoporphyrinogen, it was necessary to first oxidize it to protoporphyrin IX with the use of a herbicide-resistant protoporphyrinogen oxidase enzyme present in Escherichia coli membranes. Protoporphyrinogen is not detected by some commonly used methods for porphyrin analysis unless it is first oxidized to protoporphyrin IX. Protoporphyrin IX and protoporphyrinogen found outside the plastid did not arise from plastid lysis, because the percentage of plastid lysis, measured with a stromal marker enzyme, was far less than the percentage of these porphyrins in the extraplastidic fraction. These findings suggest that of the tetrapyrrolic intermediates synthesized by the plastids, protoporphyrinogen and protoporphyrin IX, are the most likely to be exported from the plastid to the cytoplasm. These results help explain the extraplastidic accumulation of protoporphyrin IX in plants treated with photobleaching herbicides. In addition, these findings suggest that plastids may export protoporphyrinogen or protoporphyrin IX for mitochondrial heme synthesis.  相似文献   

16.
A search of the Bacillus subtilis genome identifies a potential homolog, ypmQ, of the inner mitochondrial membrane protein Sco1 from yeast. Sco1 has been found to aid the delivery of copper to cytochrome c oxidase. B. subtilis expresses two members of the cytochrome oxidase family, a cytochrome c oxidase that has two copper centers, Cu(A) and Cu(B), and a menaquinol oxidase that has only Cu(B). Deletion of ypmQ in B. subtilis depresses expression of cytochrome c oxidase but not menaquinol oxidase. Levels of cytochrome c oxidase recover when copper is added to the growth medium of the DeltaypmQ strain or when ypmQ is expressed from a plasmid. Neither treatment affects the amount or activity of menaquinol oxidase. YpmQ in which two conserved cysteines are replaced by serines and a conserved histidine is replaced by alanine do not complement the deletion of ypmQ even though these mutant forms are found in the membrane extract at a level similar to the wild type protein. We propose that the two cysteines and the histidine are critical for the function of YpmQ and suggest they are involved in copper exchange between YpmQ and the Cu(A) site of cytochrome c oxidase.  相似文献   

17.
In barley (Hordeum vulgare L.) root cells, activity for oxidizing protoporphyrinogen to protoporphyrin (protoporphyrinogen oxidase), a step in chlorophyll and heme synthesis, was found both in the crude mitochondrial fraction and in a plasma membrane enriched fraction separated by a sucrose gradient technique utilized for preparing plasma membranes. The specific activity (expressed as nanomoles of protoporphyrin formed per hour per milligram protein) in the mitochondrial fraction was 8 and in the plasma membrane enriched fraction was 4 to 6. The plasma membrane enriched fraction exhibited minimal cytochrome oxidase activity and no carotenoid content, indicating little contamination with mitochondrial or plastid membranes. Etioplasts from etiolated barley leaves exhibited a protoporphyrinogen oxidase specific activity of 7 to 12. Protoporphyrinogen oxidase activity in the barley root mitochondrial fraction and etioplast extracts was more than 90% inhibited by assay in the presence of the diphenyl ether herbicide acifluorfen methyl, but the activity in the plasma membrane enriched fraction exhibited much less inhibition by this herbicide (12 to 38% inhibition) under the same assay conditions. Acifluorfen-methyl inhibition of the organellar (mitochondrial or plastid) enzyme was maximal upon preincubation of the enzyme with 4 mm dithiothreitol, although a lesser degree of inhibition was noted if the organellar enzyme was preincubated in the presence of other reductants such as glutathione or ascorbate. Acifluorfen-methyl caused only 20% inhibition if the enzyme was preincubated in buffer without reductants. Incubation of barley etioplast extracts with the earlier tetrapyrrole precursor coproporphyrinogen and acifluorfen-methyl resulted in the accumulation of protoporphyrinogen, which could be converted to protoporphyrin even in the presence of the herbicide by the addition of the plasma membrane enriched fraction from barley roots. These findings have implications for the toxicity of diphenyl ether herbicides, whose light induced tissue damage is apparently caused by accumulation of the photoreactive porphyrin intermediate, protoporphyrin, when the organellar protoporphyrinogen oxidase enzyme is inhibited by herbicides. Our results suggest that the protoporphyrinogen that accumulates as a result of herbicide inhibition of the organellar enzyme can be oxidized to protoporphyrin by a protoporphyrinogen oxidizing activity that is located at sites such as the plasma membrane, which is much less sensitive to inhibition by diphenylether herbicides.  相似文献   

18.
It is now generally accepted that protoporphyrinogen oxidase is the target-enzyme for diphenyl-ether-type herbicides. Recent studies [Camadro, J-M., Matringe M., Scalla, R. & Labbe, P. (1991) Biochem. J. 277, 17-21] have revealed that in maize, diphenyl ethers competitively inhibit protoporphyrinogen oxidase with respect to its substrate, protoporphyrinogen IX. In this study, we show that, in purified pea etioplast, [3H]acifluorfen specifically binds to a single class of high-affinity binding sites with an apparent dissociation constant of 6.2 +/- 1.3 nM and a maximum density of 29 +/- 5 nmol/g protein. [3H]Acifluorfen binding reaches equilibrium in about 1 min at 30 degrees C. Half dissociation occurs in less than 30 s, indicating that the binding is fully reversible. The specificity of [3H]acifluorfen binding to protoporphyrinogen oxidase is examined. [3H]Acifluorfen binding is inhibited by all the peroxidizing molecules tested. The phthalimide derivative, N-(4-chloro-2-fluoro-5-isopropoxy)phenyl-3,4,5,6-tetra hydrophthalimide, exerts a mixed-competitive inhibition on this binding. The effects of all these molecules on the binding of [3H]acifluorfen are tightly linked to their capacity to inhibit pea etioplast protoporphyrinogen oxidase activity. Furthermore, protoporphyrinogen IX, the substrate of the reaction catalyzed by protoporphyrinogen oxidase, was able to competitively inhibit the binding of [3H]acifluorfen. In contrast, protoporphyrin IX, the product of the reaction, did not inhibit this binding. All these results provide clear evidence that in pea etioplasts, [3H]acifluorfen exclusively binds to protoporphyrinogen oxidase, that the protoporphyrinogen oxidase inhibitors tested so far bind to the same region of the enzyme and that this region overlaps the catalytic site of the enzyme.  相似文献   

19.
The terminal three steps in haem biosynthesis are the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX, followed by the six-electron oxidation of protoporphyrinogen to protoporphyrin IX, and finally the insertion of ferrous iron to form haem. Interestingly, Nature has evolved distinct enzymic machinery to deal with the antepenultimate (coproporphyrinogen oxidase) and penultimate (protoporphyrinogen oxidase) steps for aerobic compared with anaerobic organisms. The terminal step is catalysed by the enzyme ferrochelatase. This enzyme is clearly conserved with regard to a small set of essential catalytic residues, but varies significantly with regard to size, subunit composition, cellular location and the presence or absence of a [2Fe-2S] cluster. Coproporphyrinogen oxidase and protoporphyrinogen oxidase are reviewed with regard to their enzymic and physical characteristics. Ferrochelatase, which is the best characterized of these three enzymes, will be described with particular emphasis paid to what has been learned from the crystal structure of the Bacillus subtilis and human enzymes.  相似文献   

20.
Summary Protoporphyrinogen oxidase activity and ferrochelatase activity have been measured in blood lymphocytes from patients with porphyria variegata, and from some members of the family of one patient; the mean activity of protoporphyrinogen oxidase from patients was about 50% of that in lymphocytes from normal subjects; similar results were obtained from asymptomatic carriers in two generations of the patient's family. This finding confirms that a protoporphyrinogen oxidase decreased activity reflects the primary genetic defect in Porphyria Variegata. Data of ferrochelatase activity have been found usually in the normal range and these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号