首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smith VP  Alcami A 《Journal of virology》2000,74(18):8460-8471
The production of secreted proteins that bind cytokines and block their activity has been well characterized as an immune evasion strategy of the orthopoxviruses vaccinia virus (VV) and cowpox virus (CPV). However, very limited information is available on the expression of similar cytokine inhibitors by ectromelia virus (EV), a virulent natural mouse pathogen that causes mousepox. We have characterized the expression and binding properties of three major secreted immunomodulatory activities in 12 EV strains and isolates. Eleven of the 12 EVs expressed a soluble, secreted 35-kDa viral chemokine binding protein with properties similar to those of homologous proteins from VV and CPV. All of the EVs expressed soluble, secreted receptors that bound to mouse, human, and rat tumor necrosis factor alpha. We also detected the expression of a soluble, secreted interleukin-1beta (IL-1beta) receptor (vIL-1betaR) by all of the EVs. EV differed from VV and CPV in that binding of human (125)I-IL-1beta to the EV vIL-1betaR could not be detected. Nevertheless, the EV vIL-1betaR prevented the interaction of human and mouse IL-1beta with cellular receptors. There are significant differences in amino acid sequence between the EV vIL-1betaR and its VV and CPV homologs which may account for the results of the binding studies. The conservation of these activities in EV suggests evolutionary pressure to maintain them in a natural poxvirus infection. Mousepox represents a useful model for the study of poxvirus pathogenesis and immune evasion. These findings will facilitate future study of the role of EV immunomodulatory factors in the pathogenesis of mousepox.  相似文献   

2.
Suppression of autoimmune diabetes by viral IL-10 gene transfer   总被引:11,自引:0,他引:11  
Th1 cell activation and cytokine production shift the balance between Th1 and Th2, favoring the up-regulation of proinflammatory activity that leads to destruction of insulin-producing pancreatic beta cells in type 1 diabetes. Th2-type cytokines, such as IL-10, have immune regulatory function. Administration of IL-10, or IL-10 gene transfer, prevents autoimmune diabetes in nonobese diabetic (NOD) mice. However, constant administration of purified rIL-10 is not practical for long-term therapy to prevent diabetes. In this study, we transferred the BCRF-1 gene, an open reading frame in the Epstein-Barr viral genome with remarkable homology to mouse IL-10 (viral IL-10 or vIL-10), by an adeno-associated viral (AAV) vector to NOD mice to attain sustained vIL-10 gene expression. Like endogenous mouse IL-10, vIL-10 has potent immunoregulatory and immunosuppressive functions, but can be specifically distinguished from endogenous mouse IL-10 for monitoring of the transgene expression. A single systemic administration of AAV vIL-10 significantly reduced insulitis and prevented diabetes development in NOD mice. This protective effect correlated with sustained transgene expression and protein production. Moreover, splenocytes from the treated mice blocked diabetes transfer to NOD recipients, suggesting that vIL-10 induces an active suppression of autoimmunity. This study provides evidence to support the possibility of using vIL-10 gene therapy to prevent type 1 diabetes.  相似文献   

3.
The effects of genetic adjuvants on humoral and cell-mediated immunity to two human immunodeficiency virus antigens, Env and Nef, have been examined in mice. Despite similar levels of gene expression and the same gene delivery vector, the immune responses to these two gene products differed following DNA immunization. Intramuscular immunization with a Nef expression vector plasmid generated a humoral response and antigen-specific gamma interferon (IFN-gamma) production but little cytotoxic-T-lymphocyte (CTL) immunity. In contrast, immunization with an Env vector stimulated CTL activity but did not induce a high-titer antibody response. The ability to modify these antigen-specific immune responses was investigated by coinjection of DNA plasmids encoding cytokine and/or hematopoietic growth factors, interleukin-2 (IL-2), IL-12, IL-15, Flt3 ligand (FL), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Coadministration of these genes largely altered the immune responses quantitatively but not qualitatively. IL-12 induced the greatest increase in IFN-gamma and immunoglobulin G responses to Nef, and GM-CSF induced the strongest IFN-gamma and CTL responses to Env. A dual approach of expanding innate immunity by administering the FL gene, together with a cytokine that enhances adaptive immune responses, IL-2, IL-12, or IL-15, generated the most potent immune response at the lowest doses of Nef antigen. These findings suggest that intrinsic properties of the antigen determine the character of immune reactivity for this method of immunization and that specific combination of innate and adaptive immune cytokine genes can increase the magnitude of the response to DNA vaccines.  相似文献   

4.
Human IL-10 (hIL-10) is a cytokine that modulates diverse immune responses. The Epstein-Barr virus (EBV) genome contains an IL-10 homolog (vIL-10) that shares high sequence and structural similarity with hIL-10. Although vIL-10 suppresses inflammatory responses like hIL-10, it cannot activate many other immunostimulatory functions performed by the cellular cytokine. These functional differences have been correlated with the approximately 1000-fold lower affinity of vIL-10, compared to hIL-10, for the IL-10R1 receptor chain. To define the structural basis for these observations, crystal structures of vIL-10 and a vIL-10 point mutant were determined bound to the soluble IL-10R1 receptor fragment (sIL-10R1) at 2.8 and 2.7 A resolution, respectively. The structures reveal that subtle changes in the conformation and dynamics of the vIL-10 AB and CD loops and an orientation change of vIL-10 on sIL-10R1 are the main factors responsible for vIL-10's reduced affinity for sIL-10R1 and its distinct biological profile.  相似文献   

5.
Interleukin-10 (IL-10) is a pleiotropic immunosuppressive cytokine that has a wide range of effects in controlling inflammatory responses. Viral IL-10 (vIL-10) is a homologue of human IL-10 (hIL-10) produced by Epstein-Barr virus (EBV). Both hIL-10 and vIL-10 bind to the soluble extracellular fragment of the cytokine receptor IL-10R1 (shIL-10R1). The stoichiometry of the vIL-10 : shIL-10R1 complex has been found to be the same as hIL-10 : shIL-10R1, with two vIL-10 dimers binding to four shIL-10R1 monomers. Complexes of both hIL-10 and vIL-10 with glycosylated shIL-10R1 could not be crystallized. Controlled deglycosylation using peptide : N-glycosidase F and endo-beta-N-acetylglucosaminidase F3 resulted in the formation of crystals of both hIL-10 : shIL-10R1 and vIL-10 : shIL-10R1 complexes, indicating that the difficulty in the crystal formation was largely due to the presence of complex carbohydrate side chains. The availability of the structure of the ligand-receptor complexes should facilitate our understanding of the basis of the interaction between IL-10 and the IL-10 receptor.  相似文献   

6.
IL-10, a cytokine produced primarily by macrophages, B lymphocytes, and Th2 cells, has both immunostimulatory and immunosuppressive properties. A homologue of IL-10 encoded by EBV, known as viral IL-10 (vIL-10), is also able to suppress the immune response, but may lack some of the immunostimulatory properties of IL-10. To evaluate the potential of vIL-10 to block the progression of rheumatoid arthritis, we have utilized a replication-defective adenovirus vector to deliver the gene encoding vIL-10 to the knee joints of rabbits with Ag-induced arthritis. Intraarticular expression of vIL-10 significantly reduced leukocytosis, cartilage matrix degradation, and levels of endogenous rabbit TNF-alpha, as well as the degree of synovitis, while maintaining high levels of cartilage matrix synthesis. Interestingly, an antiarthritic effect was also observed in opposing contralateral control knee joints that received only a marker gene. An adenoviral vector carrying the enhanced green fluorescent protein marker gene was used to demonstrate that a morphologically similar subset of cells infected in the injected knee joint are able to traffic to the uninjected contralateral knee joint. Our results suggest that direct, local intraarticular delivery of the vIL-10 gene may have polyarticular therapeutic effects.  相似文献   

7.
Listeria monocytogenes vectors have shown promise for delivery of viral and tumor antigens in animals. We used two mutant vector strains deleted for actA/plcB (BMB72) and actA/inlB (BMB54), and engineered both strains to secrete a heterologous nucleoprotein antigen from the Influenza A virus. Strains were evaluated in vitro and in mice. Twenty-two healthy volunteers received single oral doses of either strain in a physiological study of safety, shedding, and immunogenicity. Volunteers were observed in the hospital for seven days and had daily blood cultures, routine safety blood tests (complete blood count with differential; hepatic and renal function), and fecal cultures; none had fever, positive blood cultures, prolonged shedding, or serious or unexpected events. Four of 12 volunteers who received the actA/plcB-deleted strain had minor, transient, asymptomatic serum transaminase elevations (maximum increase 1.4× upper normal). Six of six volunteers who received ≥4 × 10(9) colony forming units had detectable mucosal immune responses to listerial antigens, but not to the vectored influenza antigen. Approximately half the volunteers had modest interferon-γ ELISpot responses to a complex listerial antigen, but none had increases over their baseline responses to the influenza antigen. Comparison with prior work suggests that foreign antigen expression, and perhaps also freezing, may adversely affect the organisms' immunogenicity.  相似文献   

8.
Current evidence suggests that a strong induced CD8 human immunodeficiency virus type 1 (HIV-1)-specific cell mediated immune response may be an important aspect of an HIV vaccine. The response rates and the magnitude of the CTL responses induced by current DNA vaccines in humans need to be improved and cellular immune responses to DNA vaccines can be enhanced in mice by co-delivering DNA plasmids expressing immune modulators. Two reported to work well in the mouse systems are interleukin (IL)-12 and CD40L. We sought to compare these molecular adjuvants in a primate model system. The cDNA for macaque IL-12 and CD40L were cloned into DNA vectors. Groups of cynomolgus macaques were immunized with 2 mg of plasmid expressing SIVgag alone or in combination with either IL-12 or CD40L. CD40L did not appear to enhance the cellular immune response to SIVgag antigen. However, more robust results were observed in animals co-injected with the IL-12 molecular adjuvant. The IL-12 expanded antigen-specific IFN-gamma positive effector cells as well as granzyme B production. The vaccine immune responses contained both a CD8 component as well a CD4 component. The adjuvanted DNA vaccines illustrate that IL-12 enhances a CD8 vaccine immune response, however, different cellular profiles.  相似文献   

9.
A safe and potent adjuvant is needed for development of mucosal vaccines against etiological agents, such as influenza virus, that enter the host at mucosal surfaces. Cytokines are potential adjuvants for mucosal vaccines because they can enhance primary and memory immune responses enough to protect against some infectious agents. For this study, we tested 26 interleukin (IL) cytokines as mucosal vaccine adjuvants and compared their abilities to induce antigen (Ag)-specific immune responses against influenza virus. In mice intranasally immunized with recombinant influenza virus hemagglutinin (rHA) plus one of the IL cytokines, IL-1 family cytokines (i.e., IL-1α, IL-1β, IL-18, and IL-33) were found to increase Ag-specific immunoglobulin G (IgG) in plasma and IgA in mucosal secretions compared to those after immunization with rHA alone. In addition, high levels of both Th1- and Th2-type cytokines were observed in mice immunized with rHA plus an IL-1 family cytokine. Furthermore, mice intranasally immunized with rHA plus an IL-1 family cytokine had significant protection against a lethal influenza virus infection. Interestingly, the adjuvant effects of IL-18 and IL-33 were significantly decreased in mast cell-deficient W/W(v) mice, indicating that mast cells have an important role in induction of Ag-specific mucosal immune responses induced by IL-1 family cytokines. In summary, our results demonstrate that IL-1 family cytokines are potential mucosal vaccine adjuvants and can induce Ag-specific immune responses for protection against pathogens like influenza virus.  相似文献   

10.
In this study, we characterized the differential receptor-binding specificity, affinity, and Janus kinase-STAT activation of cellular IL-10 (cIL-10) compared with viral IL-10 (vIL-10). Only cells expressing IL-10R1 bind human IL-10 or vIL-10. IL-10R2 does not bind to cIL-10 or vIL-10 alone and its presence does not enhance the receptor-binding affinity of cIL-10 or vIL-10, but it is essential for both cIL-10- and vIL-10-mediated signal transduction and immune regulation. Responses initiated by cIL-10 and vIL-10 were compared in B cell and mast cell lines, and demonstrated that the inability of vIL-10 to stimulate immune responses, as compared with human IL-10, is due to failure to initiate signaling. Absent signal transduction is due to low level expression of cell surface IL-10R1, since overexpressing IL-10R1 allows vIL-10 to initiate cIL-10-like signals and subsequent biological responses. These results are similar in primary cells, since splenocytes respond to both cIL-10 and vIL-10, while thymocytes respond only to cIL-10 and have very low mouse IL-10R1 but not mouse IL-10R2 expression. These data demonstrate that IL-10R1 expression plays a critical role in determining whether cells respond to IL-10. Modulation of cell surface IL-10R1 density might be an important mechanism for determining whether IL-10 leads to immunostimulation or immunosuppression in vivo.  相似文献   

11.
rIL-1R antagonist (rIL-1ra) and 35F5, a neutralizing mAb, have been shown to inhibit the ability of IL-1 alpha and IL-1 beta to bind to type I but not type II murine receptors. Additionally, IL-1ra and 35F5 inhibit a variety of inflammatory responses in vitro and in vivo. In the present report we have evaluated the activity of human IL-1ra and 35F5 in murine Ag-specific cell-mediated and humoral immune response models. Administration of IL-1ra, either twice daily or as a continuous infusion, did not inhibit the cytolytic T lymphocyte response to allogeneic splenocytes. The CTL response was also not inhibited by daily administration of 35F5. The delayed type hypersensitivity response to oxazolone was similarly refractory to administration of IL-1ra and 35F5. In the humoral immune response models, neither the splenic plaque response to SRBC nor the IgG or IgM response to TNP-keyhole limpet hemocyanin was inhibited by treatment with IL-1ra or 35F5. These data suggest that signaling through the type I IL-1R is not required for these Ag-specific immune responses.  相似文献   

12.
Cui X  Lee LF  Reed WM  Kung HJ  Reddy SM 《Journal of virology》2004,78(9):4753-4760
Marek's disease, a lymphoproliferative disease of chickens, is caused by an alphaherpesvirus, Marek's disease virus (MDV). This virus encodes a virokine, vIL-8, with general homology to cellular CXC chemokines such as interleukin-8 (IL-8) and Gro-alpha. To study the function of vIL-8 gene, we deleted both copies of vIL-8 residing in the terminal repeat long and internal repeat long region of the viral genome and generated a mutant virus with vIL-8 deleted, rMd5/DeltavIL-8. Growth kinetics study showed that vIL-8 gene is dispensable for virus replication in cell culture. In vivo, the vIL-8 gene is involved in early cytolytic infections in lymphoid organs, as evidenced by limited viral antigen expression of rMd5/DeltavIL-8. However, the rMd5/DeltavIL-8 virus is unimpaired in virus replication in the feather follicle epithelium. vIL-8 does not appear to be important for establishment of latency, since rMd5/DeltavIL-8 and the wild-type virus have similar viremia titers at 14 days postinfection, a period when the virus titer comes primarily from reactivated latent genomes. Nevertheless, because of the impaired cytolytic infections, the overall transformation efficiency of the virus with vIL-8 deleted is much lower, as reflected by the reduced number of transformed cells at 5 weeks postinoculation and the presence of fewer gross tumors. Importantly, the revertant virus that restored the expression of vIL-8 gene also restored the wild-type phenotype, indicating the deficient phenotypes are results of vIL-8 deletion. One of the interesting differences between the MDV vIL-8 gene and its cellular counterpart is the presence of a DKR (Asp-Lys-Arg) motif instead of ELR (Glu-Leu-Arg) preceding the invariable CXC motif. To study the significance of this variation, we generated recombinant MDV, rMd5/vIL-8-ELR, carrying the ELR motif. Both in vitro and in vivo studies revealed that the DKR motif is as competent as ELR in pathogenesis of MDV.  相似文献   

13.
Pathologies arising as a consequence of human herpesvirus-8 (HHV8) infections are closely associated with the autocrine activity of a HHV8 encoded IL-6 (vIL-6), which promotes proliferation of infected cells and their resistance to apoptosis. In this present report, studies show that vIL-6 may also be important in influencing the host's immunological response to secondary infections. Using peritoneal inflammation as a model of acute bacterial infection, vIL-6 was found to specifically block neutrophil recruitment in vivo through regulation of inflammatory chemokine expression. This response was substantiated in vitro where activation of STAT3 in human peritoneal mesothelial cells by vIL-6 was associated with enhanced CCL2 release. Although vIL-6 did not effect CXCL8 production, IL-1beta-induced secretion of this neutrophil-activating chemokine was significantly suppressed by vIL-6. These data suggest that vIL-6 has the capacity to suppress innate immune responses and thereby influence the outcome of opportunistic infections in HHV8-associated disease.  相似文献   

14.
DNA or nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To engineer the immune response in vivo towards more T-helper (Th)1-type cellular responses, we investigated the co-delivery of inteferon (IFN)-gamma, interleukin (IL)-12, and IL-18 genes along with DNA vaccine constructs. We observed that both antigen-specific humoral and cellular immune responses can be modulated through the use of cytokine adjuvants in mice. Most of this work has been performed in rodent models. There has been little confirmation of this technology in primates. We also evaluated the immunomodulatory effects of this approach in rhesus macaques, since non-human primates represent the most relevant animal models for human immunodeficiency virus (HIV) vaccine studies. As in the murine studies, we also observed that each Th1 cytokine adjuvant distinctively regulated the level of immune responses generated. Co-immunization of IFN-gamma and IL-18 in macaques enhanced the level of antigen-specific antibody responses. Similarly, co-delivery of IL-12 and IL-18 also enhanced the level of antigen-specific Th proliferative responses. These results extend this adjuvant strategy in a more relevant primate model and support the potential utility of these molecular adjuvants in DNA vaccine regimens.  相似文献   

15.
Dendritic cells (DCs) are major antigen-presenting cells of the immune system, which need to be activated in order to initiate an immune response. Here, we describe the immunostimulatory effects on human monocyte-derived DCs observed upon infection with Listeria monocytogenes or after treatment with listerial lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively. All stimuli caused upregulation of costimulatory molecules, induced T-cell proliferative responses and secretion of cytokines in vitro. Infection of DCs with L. monocytogenes induced release of interleukin (IL)-12 and IL-18. In contrast treatment with purified listerial LTA yielded high levels of IL-18 release, but only minimal IL-12 production. Treatment of DCs with LPS conversely induced significant amounts of IL-12 production, but no IL-18. The release of both stimulating cytokines IL-12 and IL-18 upon infection with entire bacteria suggests that attenuated strains of L. monocytogenes may be a valuable tool for subunit vaccine delivery.  相似文献   

16.
17.
The feasibility of using the highly purified native attachment (G) protein in a subunit vaccine against respiratory syncytial virus (RSV) was examined in a murine model with or without the fusion (F) protein of RSV and the adjuvant QS-21. The studies established that QS-21 was more potent than AIOH as an adjuvant for both F and G glycoproteins. Augmented antigen-dependent killer cell activity and complement-assisted serum neutralizing and anti-F and G protein immunoglobulin G2a antibody titers were observed. Immunization with G/QS-21 generated immune responses that were characterized by low levels of antigen-dependent killer cell activity, elevated levels of interleukin-5 (IL-5) and percentages of eosinophils in the bronchoalveolar lavage fluids after challenge, and splenic immunocytes that secreted IL-5 but not gamma interferon (IFN-gamma) after in vitro stimulation with purified whole virus antigens. The pulmonary eosinophilia was similar to that induced by a facsimile of a formalin-inactivated vaccine used in previous clinical trials and was prevented by prior in vivo treatment with anti-IL-5 but not with control immunoglobulin G or anti-IFN-gamma neutralizing monoclonal antibodies. Thus the data implied that vaccination with G/QS-21 generated helper T-cell immune responses that were type 2 in nature. Alternatively, the data suggested that the helper T-cell immune responses elicited by F/QS-21 were more type 1 in character. Neither eosinophilia nor elevated levels of IL-5 were observed in the lungs of mice after challenge. Noteworthy levels of antigen-dependent killer cell activity was observed, and splenic immunocytes secreted copious quantities of IFN-gamma. Immunization with a combination vaccine composed of highly purified native F and G proteins plus QS-21 (F+G/QS-21) resulted in augmented complement-assisted serum neutralizing antibody titers compared with vaccination with either F/QS-21 or G/QS-21 alone. However, following vaccination with F+G/QS-21, the bronchoalveolar lavage fluids contained significant increases in IL-5 and percentages of eosinophils after challenge, the spleen cells appeared to secrete less IFN-gamma after in vitro stimulation, and there was no evidence of increased numbers of antigen-dependent killer cell precursors. Taken together, the data imply that native G protein influences the nature of the immune responses elicited by F/QS-21. The results therefore suggest that G, not F, protein has more potential to bias the host for atypical pulmonary inflammatory responses.  相似文献   

18.
Human herpesvirus 8 (HHV-8)-encoded viral interleukin-6 (vIL-6) has been implicated as a key factor in virus-associated neoplasia because of its proproliferative and survival effects and also in view of its angiogenic properties. A major difference between vIL-6 and human IL-6 (hIL-6) is that vIL-6, uniquely, is largely retained and can signal intracellularly. While vIL-6 is generally considered to be a lytic gene, several reports have noted its low-level expression in latently infected primary effusion lymphoma (PEL) cultures, in the absence of other lytic gene expression. Thus, intracellular autocrine signal transduction by the viral cytokine may be of particular relevance to the growth and survival of latently infected cells and to pathogenesis. Here we report that most intracellular vIL-6 is located in the endoplasmic reticulum (ER), signals via the gp130 signal transducer in this compartment, and does so independently of the gp80 α-subunit of the IL-6 receptor, required for hIL-6 signal transduction. Signaling and biological assays incorporating ER-retained vIL-6 and hIL-6 confirmed vIL-6 activity, specifically, in this compartment. Knockdown of vIL-6 expression in PEL cells led to markedly reduced cell growth in normal culture, independently of extracellular cytokines. This could be reversed by reintroduction via virus vector of exclusively ER-retained vIL-6. These data indicate that in virus biology vIL-6 may act to support the growth and survival of cells latently infected with HHV-8 in an autocrine manner via intracrine signaling and that these activities may contribute to the maintenance of latently infected cells and to virus-induced neoplasia.  相似文献   

19.
To characterize the structural and functional properties of viral interleukin 10 (vIL-10), its cDNA was cloned into the bacterial expression vector pMAL-c2, which directs the synthesis of the inserted gene as a fusion protein with maltose binding protein (MBP). The MBP-vIL-10 fusion protein was expressed in Escherichia coli and purified from cell lysates using amylose resin chromatography. Viral interleukin 10 (IL-10) was released from the fusion protein by cleavage with the proteolytic enzyme factor Xa. We show that vIL-10 will bind to heparin and use this property to purify vIL-10 from factor Xa cleaved products and trace contaminants using heparin agarose chromatography. A simple one-step procedure is described for the removal of endotoxins from heavily contaminated vIL-10 preparations. The protocol exploits the high binding affinity of MBP for amylose resin or vIL-10 for heparin and the ability of Triton-X114 to dissociate endotoxins from proteins. The biological activity of purified vIL-10 was demonstrated through its ability to inhibit interferon gamma (IFN-gamma) production by mitogen activated peripheral blood mononuclear cells and to down-regulate HLA-class II expression on activated monocytes/macrophages. The availability of an efficient expression and purification strategy for vIL-10 together with appropriate assays will contribute to a greater understanding of how vIL-10 has evolved to retain and modify those activities of cellular IL-10 best suited for Epstein-Barr virus (EBV)'s specialized niche within the host.  相似文献   

20.
5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a potent type I interferon (IFN) inducer, was evaluated as a chemotherapeutic agent in mouse cancer models and proved to be well tolerated in human cancer clinical trials. Despite its multiple biological functions, DMXAA has not been fully characterized for the potential application as a vaccine adjuvant. In this report, we show that DMXAA does act as an adjuvant due to its unique property as a soluble innate immune activator. Using OVA as a model antigen, DMXAA was demonstrated to improve on the antigen specific immune responses and induce a preferential Th2 (Type-2) response. The adjuvant effect was directly dependent on the IRF3-mediated production of type-I-interferon, but not IL-33. DMXAA could also enhance the immunogenicity of influenza split vaccine which led to significant increase in protective responses against live influenza virus challenge in mice compared to split vaccine alone. We propose that DMXAA can be used as an adjuvant that targets a specific innate immune signaling pathway via IRF3 for potential applications including vaccines against influenza which requires a high safety profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号