首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vacuolar and cytoplasmic inorganic phosphate (Pi) contentof the mature regions of maize roots was measured by a 31P NMRtechnique which used an external standard to avoid the needfor tissue extraction and which exploited the relatively rapidrelaxation of cytoplasmic Pi in order to improve the detectionof this pool in fully-vacuolated cells. In mature roots of maize growing with abundant external phosphate,the concentration of Pi in the cytoplasm was approximately 6.5mol m–3. When these plants were deprived of external phosphate,the vacuolar Pi content of the roots decreased rapidly, butthe cytoplasmic Pi concentration initially remained constantand did not begin to decline until P-stress became severe. Calculationsshow that withdrawal of Pi from the vacuoles into the cytoplasmunder these conditions would be against an electrochemical gradient. During P-starvation, an increased capacity for Pi influx developed,preceding any detectable change in the cytoplasmic Pi contentof the roots. This response is considered in terms of paralleleffects on transport sites for phosphate at the plasmalemmaand at the tonoplast. Comparisons of simultaneous rates of influxand net uptake implied that phosphate efflux accounted for <10% of influx in plants of a steady or declining P-status. However,direct measurements of efflux suggested that this process maybe temporarily accelerated when plants are recovering from P-stress. Key words: P-nutrition, subcellular compartmentation  相似文献   

2.
Osmotic shock with sequential 30 min treatments in ice-coldsaline solutions and distilled water inhibited both the subsequentuptake of orthophosphate (Pi) and its transport into the xylemof excised corn (Zea mays L.) roots. Measurements of Pi fluxeswith 32P indicated that the decrease in net Pi uptake over a24 h period caused by osmotic shock was due primarily to delayedrecovery of Pi influx rather than to increasing efflux. Despitecomplete recovery of Pi absorption within 2–6 h aftershocking with 150–200 mM NaCl, transport to the xylemduring the subsequent 24 h only partially recovered. Leucineuptake and incorporation into protein was also markedly inhibitedby osmotic shock but both almost completely resumed controlrates within 24 h after shocking with up to 150 mM NaCl. Tetracyclineinhibited recovery of Pi uptake after NaCl treatment whereaspuromycin did not. These results with corn roots are consistentwith the hypothesis that recovery of Pi uptake activity aftermoderate osmotic shock requires de novo synthesis of membraneproteins. Incomplete recovery of Pi transport to the xylem suggeststhat osmotic shock may damage plasmodesmata. Key words: Corn, Ion uptake, Leucine uptake, NaCl, Puromycin, Tetracycline  相似文献   

3.
FLOWERS  T. J.; HALL  J. L. 《Annals of botany》1978,42(5):1057-1063
Plants of the halophyte Suaeda maritima were grown in tap wateror in a culture solution in the presence or absence of sodiumchloride and the levels of sugars, amino acids, organic acidsand quaternary ammonium compounds determined in relation tothe balance between cytoplasmic and vacuolar water potentials.The sugar content (some 7 µmol. g f. wt–1) was unaffectedby the salinity of the growth medium as was the overall contentof amino acids (about 4 µmol. g f. wt–1). The organicacid content was maximal in plants kept in tap water alone wherethe dominant acid was malic. Plants grown in culture solutioncontained the same acids, although addition of sodium chlorideto the medium brought about the apparent loss of glycolic acidand the appearance of oxalic acid. Only a single quaternaryammonium compound, glycinebetaine, was apparently present inthe tissues: the content of betaine doubled (to 37·5µrmol. g f. wt) when sodium chloride was addedto the culture solution. The content of these various compoundsis discussed in relation to the relative values of the cytoplasmicand vacuolar components of the overall tissue water potential Suaeda maritima, halophyte, salt tolerance, betaine, organic compounds, water potential  相似文献   

4.
To find whether cytoplasmic streaming in Acetabularia is controlledby Ca2+, a tonoplast-permeabilized cell model was prepared usinga vacuolar perfusion technique. The cytoplasmic streaming remainedalmost normal after perfusion with EGTA medium (10 mM EGTA,40 mM PIPES, 5mM MgCl2 and 800 mM sorbitol, pH 6.9), but stoppedwithin 10 min when saponin medium (EGTA medium plus 50 µg/mlsaponin, 50 µg/ml hexokinase and 5 mM glucose) was perfused.This model system was reactivated with a solution containing0.5 mM ATP and different concentrations of Ca2+ (reactivationmedium). With the reactivation medium at pCa 6–5, theresumed streaming lasted for about 10 min before the cytoplasmaggregated. At pCa 4–3, the streaming was observed onlyfor a few minutes because the cytoplasm aggregated quickly.At pCa 7, no reactivated movement was observed. Reactivationwas not induced in an ATP- or Mg2+-deficient medium even inthe presence of an adequate concentration of Ca2+, and was inhibitedby 50 µg/ml cytochalasin B or 1 mM N-ethylmaleimide. We concluded from these observations that the cytoplasmic streamingin Acetabularia is very likely to be driven by the actomyosinsystem in the presence of Mg-ATP and Ca2+ at pCa 6–5. (Received October 31, 1984; Accepted April 1, 1985)  相似文献   

5.
The acidophilic alga Dunaliella acidophila exhibits optimalgrowth at pH 1. We have investigated the regulation of phosphateuptake by this alga using tracer techniques and by performingintracellular phosphate measurements under different growthconditions including phosphate limitation. In batch culturewith 2·2 mol m–3 phosphate in the medium the uptakeof phosphate at micromolar phosphate concentrations followeda linear time dependence in the range of minutes and rates werein the range of 1 µmol phosphate mg–1 chl h–1,only. However, under discontinuous phosphate-limited growthconditions, tracer influx revealed a biphasic pattern at micromolarphosphate concentrations: An initial burst phase resulted ina 104-fold internal phosphate accumulation and levelled offafter about 10 s. A double reciprocal plot of the initial influxrates obtained for phosphate-limited and unlimited algae exhibitedMichaelis-Menten kinetics. Phosphate limitation caused a significantactivation of the maximum velocity of uptake, yielding Vmaxup to 1 mmol mg–1 chl h–1 as compared to valuesin the order of 50 µmol phosphate mg–1 chl h–1for the second phase (this magnitude is also representativefor non-limited batch cultures). Concomitantly the Michaelisconstant was altered from 4 mmol m–3 to 0·7 mmolm–3. The rapid uptake of phosphate was inhibited by arsenateand FCCP and was not stimulated by Na+. The pH dependence oftracer accumulation and measurements of the intracellular phosphatepool under different growth conditions indicate that at lowpH and low external phosphate concentrations the high protongradient present under these conditions is utilized for a H3PO4uptake or a H+/H2PO4 cotransport. However, when the externalphosphate concentration was increased to levels sufficientlyhigh for transport to be driven by the positive membrane potential(10 mol m–3 phosphate), the pH dependence of phosphateuptake was more complex, but could be explained by the uptakeof H3PO4 or a H+/H2PO4-cotransport at low pH and a differenttype H2PO4-transport (with unknown type of ion coupling)at high pH-values. It is suggested that this flexible couplingof phosphate transport is of essential importance for the acidresistance of Dunaliella acidophila. Key words: Acid resistance, Dunaliella acidophila, phosphate cotransport, phosphate limitation, plasma membrane, sodium  相似文献   

6.
Maize plants (Zea mays L.) were cultured with nutrient solutioncontaining 0.001 or 0.5 mM orthophosphate (Pi). Effects of lowphosphate (low-P) nutrition on growth, leaf phosphate status,photosynthesis, and carbon partitioning were investigated. Withlow-P treatment, the fresh weight of aerial parts decreasedby about 40% by 24 days after planting. Detailed studies ofthe effects of low-P treatment on the other characteristicsof maize leaves-were done using the middle part of the thirdleaf, counting from the base. Low-P treatment had almost noeffect on specific leaf weight or soluble protein content measured13 to 21 days after planting. Low-P treatment decreased Chicontent slightly (by 15% 19 days after planting). Twenty onedays after planting, low-P treatment had greatly decreased thelevels of leaf acid extractable Pi (by 77%) and photosynthesisrates (by 68%). The detrimental effects of low-P treatment onthe rates of photosynthesis and the amounts of acid extractablePi became progressively greater with time. There was a strongcorrelation between levels of leaf acid extractable Pi and ratesof photosynthesis. The minimum level of Pi necessary to sustainthe maximum photosynthesis rate was 0.6 mmol m–2. Belowthis minimum content of Pi, the rate of photosynthesis decreasedsharply with decreasing Pi. To investigate the direct effectof Pi depletion on photosynthate partitioning at equivalentrates of photosynthesis, the rates in controls were reducedto almost the same as those in 18 or 19 day old low-P plants(about 50% of those in controls) by lowering light intensityand/ or ambient CO2 concentration. The data clearly indicatesthat low-P treatment had a direct effect in lowering photosynthatepartitioning into starch. Starch mobilization during the nightwas also inhibited under low-P conditions. (Received January 7, 1991; Accepted March 5, 1991)  相似文献   

7.
The extent to which phosphate can be absorbed directly fromthe outer medium by stolon internodes and contribute to thetotal accumulation of phosphate by intact plants of white clover(Trifolium repens L. cv. Blanca) was assessed in hydroponicexperiments in a controlled environment room. The uptake ofphosphate by intact roots or stolons was measured by sealinga segment (6-0 mm long) across a flow-cell in which 32P-labellednutrient solution was circulated for 24 h, the rest of the rootsystem receiving unlabelled nutrient solution. The rate of uptakeof phosphate (µmol g–1 d–1 dry wt. basis)by roots was more than 300 times that by intact stolons. Pretreatmentof stolons by gentle abrasion to remove cuticle, so as to simulatethe condition of stolons in the field, increased the uptakeof phosphate 7-fold compared with that of intact stolons. However,the potential of stolons to contribute to the P status of whitedover in the field was calculated to be small (5%). When an incision was made through the hypodermal layer of stolons,the rate of phosphate uptake greatly increased, attaining 71%of that by root segments. This increase, which was greater athigher phosphate concentrations, indicates that the suberi.zedhypodermis constitutes a major barrier to the influx of phosphatein the stolon. After withholding phosphate for different time intervals, thesubsequent rate of phosphate uptake by roots was increased 2-3-foldafter 2 d phosphate deprivation and 3-4-fold after 6 d or 13d phosphate deprivation. A higher proportion of absorbed phosphatewas transported to shoots in phosphate-deprived plants. After1 d of uptake following restoration of the phosphate supply,the concentrations of labelled phosphate in shoots were greaterthan in control plants, although the concentrations of labelin roots was less. However, the rate of uptake of phosphateby stolons, following deprivation, was not significantly increased.These results suggest that the mechanism regulating the enhancedrate of phosphate loading into the xylem, initiated by a periodof phosphate deprivation, is specific to roots and is not inducedin stolons. The results are discussed in relation to the growth and acquisitionof phosphate by white clover in the field. Key words: Nutrient deficiency, phosphate, stolons, transport (ions), Trifolium repens  相似文献   

8.
O'Connell, A. M. and Grove, T. S. 1985. Acid phosphatase activityin karri (Eucalyptus diversicolor F. Muell.) in relation tosoil phosphate and nitrogen supply.—J. exp. Bot. 36: 1359–1372 Soluble acid phosphatase activity was measured in tissues ofkarri (Eucalyptus diversicolor F. Muell.) seedlings and fiveyear old karri trees to which P and N fertilizer had been applied.Addition of P from 0 to 1250 mg P kg–1 soil with a basaltreatment of other nutrients produced significant increasesin growth, P content and P concentration of karri seedlings.In each of five plant components (shoot tips, partly expandedleaves, mature leaves, young stems and old stems) soluble acidphosphatase activity was greatest at low levels of added P anddecreased with increasing soil P supply. The range of acid phosphataseactivity (0·5-6·5 µmol NPP g–1 f.wt.min–1) was similar to that reported for a number of agriculturaland horticultural plants. Enzyme activity was highest for shoottips and lowest for old stems. However, the relative changein activity with decreasing soil P supply was greatest for stems(4·3 fold) and least for shoot tips (2·7 fold) Mature leaves of seedlings grown in ‘high P’ and‘low P’ soil at four levels of added N showed, inaddition to the effect of P, a significant N-P interaction onsoluble acid phosphatase activity. In leaf samples from fiveyear old karri trees there was a significant decrease in solubleacid phosphatase with increasing P fertilization. Addition ofN fertilizer had no significant effect on enzyme activity, probablybecause added N had little effect on foliar N concentrations Exponential models relating (1) plant growth to enzyme activityand (2) plant growth to P concentration in stems and matureleaves of plants grown in soil with a range of added P accountedfor 78–92% and 63–87%, respectively, of the variationin top dry weight. The results suggest that for the diagnosisof plant P status, (1) stem components may be the most appropriatetissue to sample, and (2) nutrient and enzyme assays may complementeach other, P concentration being most useful where P supplyis adequate and phosphatase activity where P supply limits growth Key words: Phosphatase activity, Eucalyptus diversicolor, nutrients, phosphorus, nitrogen, forests  相似文献   

9.
Skeletal muscle fiber types differ in their contents of total phosphate, which includes inorganic phosphate (Pi) and high-energy organic pools of ATP and phosphocreatine (PCr). At steady state, uptake of Pi into the cell must equal the rate of efflux, which is expected to be a function of intracellular Pi concentration. We measured 32P-labeled Pi uptake rates in different muscle fiber types to determine whether they are proportional to cellular Pi content. Pi uptake rates in isolated, perfused rat hindlimb muscles were linear over time and highest in soleus (2.42 ± 0.17 µmol·g–1·h–1), lower in red gastrocnemius (1.31 ± 0.11 µmol·g–1·h–1), and lowest in white gastrocnemius (0.49 ± 0.06 µmol·g–1·h–1). Reasonably similar rates were obtained in vivo. Pi uptake rates at plasma Pi concentrations of 0.3–1.7 mM confirm that the Pi uptake process is nearly saturated at normal plasma Pi levels. Pi uptake rate correlated with cellular Pi content (r = 0.99) but varied inversely with total phosphate content. Sodium-phosphate cotransporter (PiT-1) protein expression in soleus and red gastrocnemius were similar to each other and seven- to eightfold greater than PiT-1 expression in white gastrocnemius. That the PiT-1 expression pattern did not match the pattern of Pi uptake across fiber types implies that other factors are involved in regulating Pi uptake in skeletal muscle. Furthermore, fractional turnover of the cellular Pi pool (0.67, 0.57, and 0.33 h–1 in soleus, red gastrocnemius, and white gastrocnemius, respectively) varies among fiber types, indicating differential management of intracellular Pi, likely due to differences in resistance to Pi efflux from the fiber. inorganic phosphate; sodium-inorganic phosphate transporters; PiT-2; inorganic phosphate efflux  相似文献   

10.
Direct somatic embryogenesis can be obtained from epidermaland cortical cells in roots from in vitro Cichorium plantlets.The first embryogenic cells are seen after six days of culturein darkness, at 35 °C, in a liquid medium supplemented withNAA (1 x 10–7 M), 6-dimethylallyl-amino-purine (2·5x 10–6 M), sucrose (0.03 M) and glutamine (1·7x 10–3 M). Embryogenic cells undergo first a linear andthen a globular segmentation, with increasing cytoplasmic density.These cells and young embryoids show aniline blue fluorescence.SEM allows the same microglobular pattern to be seen on thesurface of young embryoids and on young microspores of Cichoriumused as controls. In this root system, callose deposition seemsto be an early marker in somatic embryogenesis. Somatic embryogenesis, callose, Cichorium  相似文献   

11.
Guttation was used as a non-destructive way to study the flowof water and mineral ions from the roots and compared with parallelmeasurements of root exudation. Guttation of the leaves of barley seedlings depends on age andon the culture solution. Best rates of guttation were obtainedwith the primary leaves of 6- to 7-day-old seedlings grown onfull mineral nutrient solution. The growing leaf tissue becomessaturated with K+ below 1.5 mM K+ in the medium, whereas K+concentration in the guttated fluid still increases furtheras K+ concentration in the medium is raised. At 3 mM K+ averagevalues of guttation were 1.4–2.4 mm3 h–1 per plantwith a K+ concentration of 10–20 mM; for exuding plantsthe flow was 4.2–7.6 mm3 h–1 per plant and K+ concentration35–55 mM. Abscisic acid (ABA) at 10–6 to 10–4 M 0–2h after addition to the root medium increased volume flow ofguttation and exudation and the amount of K+ exported. Threeh after addition of ABA both volume and amount of K+ were reduced.There was an ABA-dependent increase in water permeability (Lp)of exuding roots shortly after ABA addition. Later Lp was decreasedby 35 per cent and salt export by 60 per cent suggesting aneffect of ABA on salt transport to the xylem apart from itseffect on Lp. Benzyladenine (5 x 10–8 to 10–5 M)and kinetin (5 x 10–6 M) progressively reduced volumeflow and K+ export in guttation and exudation and reduced Lp. Guttation showed a qualitatively similar response to phytohormonesas found here and elsewhere using exuding roots. Hordeum vulgare L., barley, guttation, abscisic acid, cytokinins, benzyl adenine, kinetin  相似文献   

12.
Plasma membrane vesicles of high purity, determined by markerenzyme assays, were obtained by phase partitioning microsomalfractions from stelar and cortical tissues of Zea mays (cv.LG11) roots. ATP hydrolytic activities in both of the plasmamembrane fractions were inhibited by vanadate, SW26 and erythrosinB, but were insensitive to nitrate. Activity in both fractionsexhibited a marked pH optimum of 6·5 and displayed typicalMichaelis-Menten kinetics. A high substrate specificity wasapparent in both the stele and cortex plasma membrane fractions,while the lower fractions, after phase partitioning, showedlower specificity for nucleotide substrates. Specific activitiesof the stele (67·8 µmol Pi mg–1 h–1)and cortex (78·4 µmol Pi mg–1 h–1)plasma membrane H+ -ATPases were very similar. Proton pumping activities in microsomal membrane fractions fromstele and cortex were inhibited by nitrate and insensitive tovanadate. Homogenization of stele and cortex tissue in the presenceof 250 mol m–3 KI resulted in microsomal fractions exhibitingvanadate-sensitive, nitrate-insensitive proton pumping activity,suggesting a plasma membrane origin for this activity. SW26was also an effective inhibitor of proton pumping activity,although results indicated an interaction between SW26 and thefluorescent probes quinacrine and acridine orange. The results are discussed in relation to models for the transportof ions into the stele and are consistent with a role for theH+ -ATPase activity in this process. Key words: ATPase, cortex, plasma membrane, stele, Zea mays  相似文献   

13.
An existing system of flowing solution culture in which pH andthe concentration of several nutrient ions in solution are automaticallymonitored and controlled has been extended to include the monitoringand control of orthophosphate in the range 0.0013 to 0.3 mgP l–1 (4.2 ? 10–8–10–5 M). Continuous-flowcolorimetry is used for the analysis of phosphate and a computeris employed to hold concentrations constant by the operationof nutrient pumps. A brief account is given of the performanceof the system with perennial ryegrass (Lolium perenne L.) asthe experimental plant.  相似文献   

14.
We studied the kinetics of inorganic phosphate (P1) uptake from0.1–1,000 µM P1 by protoplasts from suspension-culturedcells of Catharanthus roseus (L.) G. Don. Concentration dependenceof [32P]P1 uptake revealed two kinetically different uptakesystems, a high-affinity system and a low-affinity system, withKm values of 3.0 and 47 µM, respectively. Protoplastsfrom cells grown in Pi-rich media had a medium level of thelow-affinity activity and a very low level of the high-affinityactivity. It appeared low-affinity system is expressed constitutively,while the high-affinity system is regulated by the availabilityof Pi. When cells grown in a Pi-rich media were transferredto Pi-depleted media, the high-affinity activity increased significantlyafter 2 d, but the low-affinity activity was barely changed.Upon addition of 10 mM Pi, the high level of the high-affinityactivity fell to almost undetectable level in 1d. Both uptakesystems exhibited maximum activity between pH 5 and 6. 1 Present address: Tokyo Research Laboratories, Kyowa HakkoKogyo Co., Ltd., 3-6-6 Asahi-cho, Machida, Tokyo, 194 Japan.  相似文献   

15.
Anabaena PCC 7119 showed higher rates of phosphate uptake whencells were under P-starvation. Phosphate uptake was energy-dependentas indicated the decrease observed when assays were performedin the dark or in the presence of inhibitors of photosyntheticelectron transport, energy transfer and adenosine triphosphataseactivity. Phosphate uptake was stimulated by Na+ both in P-sufficientcells and P-starved cells. Li+ and K+ acted as partial analoguesfor Na+. The Na+-stimulation of phosphate uptake followed Michaelis-Mentenkinetics, half-saturation (K) of phosphate uptake was reachedwith a Na+ concentration of 212 µM. The absence of Na+reduced the rates of phosphate uptake at all phosphate concentrationsassayed (1–20 µM). The maximum uptake rates (Vmax)decreased from 658 nmol P (mg dry wt)-1 h-1 in the presenceof Na+ to 149 nmol P (mg dry wt)-1 h-1 in the absence of Na+.The absence of Na+ did not change significantly the concentrationof phosphate required to reach half-saturation (K) (3.01 µMin the presence of Na+ vs 3.21 µM in the absence of Na+).In the presence of Na+ the rate of phosphate uptake was affectedby the pH; optimal rates were observed at pH 8. In the absenceof Na+ phosphate uptake was not affected by the pH; low rateswere observed in all cases. Monensin, an ionophore which collapsesNa+-gradients, reduced the rate of phosphate uptake in Na+-supplementedcells. These results indicated the existence of a Na+-dependentphosphate uptake in Anabaena PCC 7119. (Received September 8, 1992; Accepted November 17, 1992)  相似文献   

16.
Phytoplankton biomass, primary production rates and inorganicnutrients were measured in the uppermost layer of the ice-edgeregion and in open water and compared with environmental factorsduring a three-week cruise in September – October 1979.Biomass and production values were low (maximum 2.2 µgchl a l–1, 2.5 mg C m–3 h–1). A post-bloomcommunity of diatoms, consisting mainly of representatives ofChaetoceros, Leptocylindrus, Nitzschia and Thalassiosira, waspredominant. Concentrations of phosphate were quite low (maximum0.55 µM I–1). Nitrate and silicate ranged from nomeasurable quantities to 5.7 µM l–1 and 3.8 µMl–1, respectively. The possibility of light and nutrientlimitation on phytoplankton growth is discussed.  相似文献   

17.
Lamaze, T., Sentenac, H. and Grignon, C. 1987. Orthophosphaterelations of root: NO3effects on orthophosphate influx,accumulation and secretion into the xylem.—J. exp. Bot.38: 923–934. Orthophosphate (Pi) accumulation by barley (Hordeum vulgareL.) roots was specifically inhibited by NO3 as comparedto Cl and SO42 –, and Pi secretion into the xylemwas stimulated. The inhibition of Pi accumulation by NO3was also observed in roots of intact photosynthesizing horsebean(Vicia faba L.), rice (Oryza sativa L.) and soybean (Glycinemax L.) plants. NO3 effects on Pi transport by rootswere more thoroughly investigated with corn (Zea mays L.). Theywere due to intracellular NO3. Pi secretion was stillstimulated by NO3 after Pi withdrawal from the absorptionsolution. 32Pi influx decreased during Pi accumulation, supportingthe hypothesis that this ion allosterically regulated its owntransport system by feedback control. This control was modulatedby other anions: the decrease was more pronounced in the presenceof nitrate. Chronologically, the depressive effect of NO3on 32Pi influx appeared after the inhibition of Pi accumulation.Furthermore, under conditions where Pi accumulation was notaffected by NO3, 32Pi influx and Pi secretion into thexylem became insensitive to the presence of nitrate. Our hypothesisis that the stimulative effect of NO3 on Pi secretionand the depressive one on 32Pi influx are the repercussionsof an increase in the Pi cytosolic concentration due to an NO3-induced decrease in Pi uptake by the vacuoles. Key words: Root, orthophosphate fluxes, orthophosphate accumulation, nitrate, ionic interaction  相似文献   

18.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

19.
Biochemical properties, i.e. endogenous abscisic acid, proline,sugars, respiration, adenosine phosphates and adenylate energycharge, and growth and moisture content were measured duringthe development of seeds of Machilus thunbergii. As dry matteraccumulated in the embryo during development, moisture content,ABA, proline, respiration and sugars all declined. At maturity,the dry mass of the seeds failed to attain a plateau beforethe period of natural seed shedding; the axis and cotyledonsreached moisture contents of 58 and 45%, respectively. Dryingof immature seeds at 73% relative humidity and 25 °C for30 d resulted in a complete loss of viability at all developmentalstages tested with the exception of mature seeds that were ableto tolerate a 5% decrease in moisture content before germinationdeclined. ABA was detected in all embryos tested, with a maximum value16.·16 µg g-1 d. wt about midway through development.Although the presence of ABA induced no tolerance to desiccationof mature seeds, it did coincide with decreased content of waterin the developing seeds and decreased respiration. Desiccationdamage of M. thunbergii seeds occurred when moisture contentwas still high (45%) and this damage was not related to theabsence of oligosaccharides in the mature seeds. We concludethat developing embryos and mature seeds of M. thunbergii haveproperties common to many recalcitrant seeds, with seeds beingsensitive to desiccation at all stages, having a prominent ABApeak, little proline, lacking oligosaccharides, and specifically,little dormancy and a moderate rate of respiration of matureseeds (0·9 µmol O2 min-1 g-1 f. wt). Adenosinetriphosphate content and energy charge decreased from stagefour to stage eight of seed development, then increased againto 103 nmol g-1 d. wt and 0·73, respectively, in matureseeds. The moderate energy charge observed in mature seeds indicatesthat continuous metabolism is also a characteristic of recalcitrantseeds.Copyright 1995, 1999 Academic Press Machilus thunbergii, seed development, recalcitrant seed, abscisic acid, energy charge  相似文献   

20.
The uptake and compartmentation of manganese by maize roots,from solutions containing between 1 µM and 1 mM Mn2+,was monitored in vivo by 31P nuclear magnetic resonance (NMR)spectroscopy. Qualitatively, NMR provided a convenient methodfor observing the effects of pH, anoxia, metabolic inhibitors,and competition with magnesium on the uptake of manganese andthe resultshighlighted the role of the vacuole as a sink forMn2+. Quantitatively, it was established thatroot tissues couldmaintain a low concentration of free Mn2+ in the cytoplasm duringmanganese uptake and that there is a non-equilibrium distributionof Mn2+ between the cytoplasm and the vacuole. Typically exposureto Mn2+ in the range 10–100 µM resulted in a submicromolarpool of Mn2+ in the cytoplasm and a vacuolar pool of 10 µMand it was concluded that the movement of Mn2+ out of the cytoplasmmust be energy consuming. Overall the results draw attentionto the similarity between the subcellular distribution of manganeseand calcium and provide some support for the suggestion thatmanganese, like calcium, might have a control function in normalcells. Key words: Cytoplasm, intracellular compartmentation, manganese, 31P-NMR, vacuole  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号