首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The breakdown of sucrose to feed both hexoses into glycolytic carbon flow can occur by the sucrose synthase pathway. This uridine diphosphate (UDP) and pyrophosphate (PPi)-dependent pathway was biochemically characterized using soluble extracts from several plants. The sucrolysis process required the simultaneous presence of sucrose, UDP, and PPi with their respective Km values being about 40 millimolar, 23 micromolar, and 29 micromolar. UDP was the only active nucleotide diphosphate. Slightly alkaline pH optima were observed for sucrose breakdown either to glucose 1-phosphate or to triose phosphate. Sucrolysis incrased with increasing temperature to near 50°C and then a sharp drop occurred between 55 and 60°C. The breakdown of sucrose to triose-P was activated by fructose 2,6-P2 which had a Km value near 0.2 micromolar. The cytoplasmic phosphofructokinase and fructokinase in plants were fairly nonselective for nucleotide triphosphates (NTP) but glucokinase definitely favored ATP. A predicted stoichiometric relationship of unity for UDP and PPi was measured when one also measured competing UDPase and pyrophosphatase activity. The cycling of uridylates, UDP to UTP to UDP, was demonstrated both with phosphofructokinase and with fructokinase. Enzyme activity measurements indicated that the sucrose synthase pathway has a major role in plant sucrose sink tissues. In the cytoplasmic sucrose synthase breakdown pathway, a role for the PPi-phosphofructokinase was to produce PPi while a role for the NTP-phosphofructokinase and for the fructokinase was to produce UDP.  相似文献   

2.
3.
In the presence of pyrophosphate and uridine diphosphate, sucrose was cleaved to form glucose 1-phosphate and fructose with soluble extracts from sucrose importing plant tissues. The glucose 1-phosphate then was converted through glycolysis to triose phosphates in a pyrophosphate-dependent pathway which was activated by fructose 2,6-bisphosphate. Much less activity, less than 5%, was found in sucrose exporting tissue extracts from the same plants. These findings suggest that imported sucrose is metabolized in the cytoplasm of plant tissues by utilizing pyrophosphate and that sucrose metabolism is partially regulated by fructose 2,6-bisphosphate.  相似文献   

4.
Sun J  Loboda T  Sung SJ  Black CC 《Plant physiology》1992,98(3):1163-1169
Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers. To check for novel characteristics, the wild tomato fruit sucrose synthase was purified, by (NH4)2SO4 fraction and chromatography with DE-32, Sephadex G-200, and PBA-60, to one major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The following characteristics were obtained: native protein relative molecular weight 380,000; subunit relative molecular weight 89,000; Km values with: sucrose 53 millimolar, UDP 18.9 micromolar, UDP-glucose 88 micromolar, fructose 8.4 millimolar; pH optima between 6.2 to 7.3 for sucrose breakdown and 7 to 9 for synthesis; and temperature optima near 50°C. The enzyme exhibited a high affinity and a preference for uridylates. The enzyme showed more sensitivity to divalent cations in the synthesis of sucrose than in its breakdown. Sink strength in tomato fruits also was investigated in regard to sucrose breakdown enzyme activities versus fruit weight gain. Sucrose synthase activity was consistently related to increases in fruit weight (sink strength) in both wild and commercial tomatoes. Acid and neutral invertases were not, because the published invertase activity values were too variable for quantitative analyses regarding the roles of invertases in tomato fruit development. In rapidly growing fruits of both wild and commercially developed tomato plants, the activity of sucrose synthase per growing fruit, i.e. sucrose synthase peak activity X fruit size, was linearly related to final fruit size; and the activity exceeded fruit growth and carbon import rates by at least 10-fold. In mature, nongrowing fruits, sucrose synthase activities approached nil values. Therefore, sucrose synthase can serve as an indicator of sink strength in growing tomato fruits.  相似文献   

5.
Sucrose metabolism in lima bean seeds   总被引:12,自引:7,他引:5       下载免费PDF全文
Xu DP  Sung SJ  Black CC 《Plant physiology》1989,89(4):1106-1116
Developing and germinating lima bean (Phaseolus lunatus var Cangreen) seeds were used for testing the sucrose synthase pathway, to examine the competition for uridine diphosphate (UDP) and pyrophosphate (PPi), and to identify adaptive and maintenance-type enzymes in glycolysis and gluconeogenesis. In developing seeds, sucrose breakdown was dominated by the sucrose synthase pathway; but in the seedling embryos, both the sucrose synthase pathway and acid invertase were active. UDPase activity was low and seemingly insufficient to compete for UDP during sucrose metabolism in seed development or germination. In contrast, both an acid and alkaline pyrophosphatase were active in seed development and germination. The set of adaptive enzymes identified in developing seeds were sucrose synthase, PPi-dependent phosphofructokinase, plus acid and alkaline pyrophosphatase; and, the adaptive enzymes identified in germinating seeds included the same set of enzymes plus acid invertase. The set of maintenance enzymes identified during development, in the dry seed, and during germination were UDP-glucopyrophosphorylase, neutral invertase, ATP and UTP-dependent fructokinase, glucokinase, phosphoglucomutase, ATP and UTP-dependent phosphofructokinase and sucrose-P synthase.  相似文献   

6.
Activities of some key enzymes of carbon metabolism sucrose synthase, acid and alkaline invertase, phosphoenol pyruvate carboxylase, malic enzyme and isocitrate dehydrogenase were investigated in relation to the carbohydrate status in lentil pods. Sucrose remained the dominant soluble sugar in the pod wall and seed, with hexoses (glucose and fructose) present at significantly lower levels. Sucrose synthase is the predominant sucrolytic enzyme in the developing seeds of lentil (Lens culinaris L.). Acid invertase was associated with pod elongation and showed little activity in seeds. Sucrose breakdown was dominated by alkaline invertase during the development of podwall, while both the sucrose synthase and alkaline invertase were active in the branch of inflorescence. A substantial increase of sucrolytic enzymes was observed at the time of maximum seed filling stage (10–20 DAF) in lentil seed. The pattern of activity of sucrose synthase highly paralleled the phase of rapid seed filling and therefore, can be correlated with seed sink strength. It seems likely that the fruiting structures of lentil utilize phosphoenol pyruvate carboxylase for recapturing respired carbon dioxide. Higher activities of isocitrate dehydrogenase and malic enzyme in the seed at the time of rapid seed filling could be effectively linked to the deposition of protein reserves.  相似文献   

7.
Plant cells have two cytoplasmic pathways of glycolysis and gluconeogenesis for the reversible interconversion of fructose 6-phosphate (F-6-P) and fructose 1,6-bisphosphate (F-1,6-P2). One pathway is described as a maintenance pathway that is catalyzed by a nucleotide triphosphate-dependent phosphofructokinase (EC 2.7.1.11; ATP-PFK) glycolytically and a F-1,6 bisphosphatase (EC 3.1.3.11) gluconeogenically. These are non-equilibrium reactions that are energy consuming. The second pathway, described as an adaptive pathway, is catalyzed by a readily reversible pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90; PP-PFK) in an equilibrium reaction that conserves energy through the utilization and the synthesis of pyrophosphate. A constitutive regulator cycle is also present for the synthesis and hydrolysis of fructose 2,6-bisphosphate (F-2,6-P2) via a 2-kinase and a 2-phosphatase, respectively. The pathway catalyzed by the ATP-PFK and F-1,6-bisphosphatase, the maintenance pathway, is fairly constant in maximum activity in various plant tissues and shows less regulation by F-2,6-P2. Plants use F-2,6-P2 initially to regulate the adaptive pathway at the reversible PPi-PFK step. The adaptive pathway, catalyzed by PPi-PFK, varies in maximum activity with a variety of phenomena such as plant development or changing biological and physical environments. Plants can change F-2,6-P2 levels rapidly, in less than 1 min when subjected to rapid environmental change, or change levels slowly over periods of hours and days as tissues develop. Both types of change enable plants to cope with the environmental and developmental changes that occur during their lifetimes. The two pathways of sugar metabolism can be efficiently linked by the cycling of uridylates and pyrophosphate required for sucrose breakdown via a proposed sucrose synthase pathway. The breakdown of sucrose via the sucrose synthase pathway requires half the net energy of breakdown via the invertase pathway. Pyrophosphate occurs in plant tissues as a substrate pool for biosynthetic reactions such as the PPi-PFK or uridine diphosphate glucose pyrophosphorylase (EC 2.7.7.9; UDPG pyrophosphorylase) that function in the breakdown of imported sucrose. Also, pyrophosphate links the two glycolytic/gluco-neogenic pathways; and in a reciprocal manner pyrophosphate is produced as an energy source during gluconeogenic carbon flow from F-1,6-P2 toward sucrose synthesis.  相似文献   

8.
9.
《Plant science》1987,52(3):153-157
Sucrose synthase (EC 2.4.1.13) was purified to homogeneity from developing maize (Zea mays L.) endosperm. Substrate saturation and inhibitor kinetics were examined for the sucrose synthase reaction. The Km-values for fructose and uridine diphosphate glucose (UDPGlc) were estimated to be 7.8 mM and 76 μM, respectively. Fructose concentrations over 20 mM inhibited sucrose synthase in an uncompetitive manner with respect to UDPGlc. Glucose was also found to be an uncompetitive inhibitor with respect to both fructose and UDPGlc. At inhibitory concentrations of fructose, the apparent Ki for glucose increased linearly with increasing fructose concentration. The results suggest an ordered kinetic mechanism for sucrose synthase where UDPGlc binds first and UDP dissociates last. Fructose and glucose both inhibit by binding to the enzyme-UDP complex. Fructose and glucose, which are present in maize endosperm as the products of invertase, could inhibit sucrose synthase, especially in basal regions of the kernel where hexosesmay accumulate.  相似文献   

10.
The inhibition patterns of inorganic phosphate (Pi) on sucrose phosphate synthase activity in the presence and absence of the allosteric activator glucose-6-P was studied, as well as the effects of phosphoglucoisomerase on fructose-6-P saturation kinetics with and without Pi. In the presence of 5 millimolar glucose-6-P, Pi was a partial competitive inhibitor with respect to both substrates, fructose-6-P and uridine diphosphate glucose. In the absence of glucose-6-P, the inhibition patterns were more complex, apparently because of the interaction of Pi at the activation site as well as the catalytic site. In addition, substrate activation by uridine diphosphate glucose was observed in the absence of effectors. The results suggested that Pi antagonizes glucose-6-P activation of sucrose phosphate synthase by competing with the activator for binding to the modifier site.

The fructose-6-P saturation kinetics were hyperbolic in the absence of phosphoglucoisomerase activity, but became sigmoidal by the addition of excess phosphoglucoisomerase. The sigmoidicity persisted in the presence of Pi, but sucrose phosphate synthase activity was decreased. The apparent sigmoidal response may represent the physiological response of sucrose phosphate synthase to a change in hexose-P concentration because sucrose phosphate synthase operates in the cytosol in the presence of high activities of phosphoglucoisomerase. Thus, the enzymic production of an activator from a substrate represents a unique mechanism for generating sigmoidal enzyme kinetics.

  相似文献   

11.
Growth, accumulation of sugars and starch, and the activity of enzymes involved in sucrose mobilization were determined throughout the development of sweet pepper fruits. Fruit development was roughly divided into three phases: (1) an initial phase with high relative growth rate and hexose accumulation, (2) a phase with declining growth rate and accumulation of sucrose and starch, and (3) a ripening phase with no further fresh weight increase and with accumulation of hexoses, while sucrose and starch were degraded. Acid and neutral invertase (EC 3.2.1.26) were closely correlated to relative growth rate until ripening and inversly correlated to the accumulation of sucrose. Acid invertase specifically increased during ripening, concurrently with the accumulation of hexoses. Sucrose synthase (EC 2.4.1.13) showed little correlation to fruit development, and in periods of rapid growth the activity of sucrose synthase was low compared to the invertases. However, during late fruit growth sucose synthase was more active than the invertases. We conclude that invertase activities determine the accumulation of assimilates in the very young fruits, and a reactivation of acid invertase is responsible for the accumulation of hexoses during ripening. During late fruit growth, before ripening, sucrose synthase is transiently responsible for the sucrose breakdown in the fruit tissue. Results also indicate that pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) and its activator fructose-2,6-bisphosphate (Fru2,6bisP) are involved in the regulation of the sink metabolism of the fruit tissue.  相似文献   

12.
The mechanisms that control sink capacity are poorly understood.in radish, a major sink is the "storage root", which beginsto thicken early in development, mainly as a result of thickeningof the hypocotyl. We investigated changes in the accumulationof dry matter, sink activity (increase in dry weight of thehypocotyl per unit of dry weight present per unit of time),carbohydrate content, levels of metabolites, activities of enzymesrelated to the breakdown of sucrose, and the profile of solubleproteins, as well as changes in anatomy, using hypocotyls ofa cultivar with a high ratio of "storage root" to shoot. Wefound that sink activity was strongly related to the level andactivity of sucrose synthase but not to the activity of invertase.We also found a significant correlation between sucrose contentand the level and activity of sucrose synthase. Our resultssuggest that sucrose synthase, but not invertase, might be criticalfor the development of the sink activity of the radish hypocotyland that the level of sucrose might regulate the expressionof sucrose synthase. A discussion of sink capacity is presentedthat includes consideration of structural changes in the hypocotyl. (Received December 14, 1998; Accepted January 27, 1999)  相似文献   

13.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

14.
Accumulation of 60–70 % of biomass in turnip root takes place between 49–56 days after sowing. To understand the phenomenon of rapid sink filling, the activities of sucrose metabolising enzymes and carbohydrate composition in leaf blades, petiole and root of turnip from 42–66 days of growth were determined. An increase (2–3 folds) in glucose and fructose contents of roots accompanied by an increase in activities of acid and alkaline invertases was observed during rapid biomass accumulating phase of roots. The observed decrease in the activities of acid and alkaline invertases along with sucrose synthase (cleavage) in petiole during this period could facilitate unrestricted transport of sucrose from leaves to the roots. During active root filling period, a decrease in sucrose synthase (cleavage) and alkaline invertase activities was also observed in leaf blades. A rapid decline in the starch content of leaf blades was observed during the phase of rapid sink filling. These metabolic changes in the turnip plant led to increase in hexose content (35–37 %) of total dry biomass of roots at maturity. High hexose content of the roots appears to be due to high acid invertase activity of the root.  相似文献   

15.
16.
Sucrose is the photoassimilate transported from the leaves to the fruit of tomato yet the fruit accumulates predominantly glucose and fructose. Hydrolysis of sucrose entering the fruit can be accomplished by invertase or sucrose synthase. Early in tomato fruit development there is a transient increase in sucrose synthase activity and starch which is correlated with fruit growth and sink strength suggesting a regulatory role for sucrose synthase in sugar import. Using an antisense sucrose synthase cDNA under the control of a fruit-specific promoter we show that sucrose synthase activity can be reduced by up to 99% in young fruit without affecting starch or sugar accumulation. This result calls into question the importance of sucrose synthase in regulating sink strength in tomato fruit.  相似文献   

17.
Sugarcane accumulates high amount of sucrose, thus making it one of the important cash crops worldwide. The final destination of sucrose accumulation in sugarcane is sink tissue, i.e., stalk, supplied by the source, i.e., leaf, to fulfill the need of plant growth, respiration, storage, and other metabolic activities. Signals between sink and source tissues regulate sucrose accumulation in sink and possibly the negative feedback from the sink restrains further accumulation in the stalk. However, perturbation of this negative feedback may help to improve sugar yield. This can be achieved by the application of GA3 (Gibberellic acid), a plant growth regulator, known to excite physiological responses and modify the source–sink metabolism through their effect on photosynthesis, which in turn improves sink strength by redistribution of the photoassimilates. In the present study, GA3 applied canes showed prominent increase in invertase activity, at early stage of the application, to provide hexoses. This in turn helped increase the internodal length and cane capacity for additional accumulation of sucrose, thereby increasing sink strength. At maturity, sucrose% and brix% were found higher in middle and top portions of the GA3-applied canes. Expression analysis of various sucrose metabolising genes viz., sucrose phosphate synthase (SPS), sucrose synthase (SuSy), soluble acid invertase, neutral invertase, and cell wall invertase (CWI) was carried out at different growth stages, using quantitative RT-PCR. CWI, which plays key role in phloem unloading in sink tissues, exhibited higher expression in GA3 samples at the elongation stage which decreased with maturity, whereas both SuSy and SPS, involved in regulation of sucrose accumulation, showed a variable level of expression. Thus, GA3 application on cane may improve the sucrose content in stalk and thus assuage maneuvering source–sink dynamics in sugarcane.  相似文献   

18.
Ross HA  Davies HV 《Plant physiology》1992,100(2):1008-1013
Partial purification (approximately 270-fold) of sucrose synthase (EC 2.4.1.13) from developing cotyledons of Vicia faba L. cv Maris Bead was achieved by ammonium sulfate fractionation and hydrophobic, affinity, anion-exchange, and gel filtration chromatography. Further purification to homogeneity resulted from gel elution of single bands from native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was identified as a homotetramer with a total molecular mass of 360 kD and subunits of 92 to 93 kD. Antibodies were raised to both native and denatured protein. The identity of the polypeptide was confirmed in western blots using antibodies raised against soybean nodule sucrose synthase. The enzyme has a pH optimum of 6.4 (cleavage direction) and an isoelectric point of 5.5. The affinity of the enzyme for sucrose (Km) was estimated at 169 mm, and for UDP at 0.2 mm. With uridine diphosphate as the nucleoside diphosphate, the Vmax is 4-fold higher than with adenosine diphosphate. Fructose acts as a competitive inhibitor with an inhibitor constant (Ki) of 2.48 mm.  相似文献   

19.
Using genetic variability existing amongst nine pea genotypes (Pisum sativum L.), the biochemical basis of sink strength in developing pea seeds was investigated. Sink strength was considered to be reflected by the rate of starch synthesis (RSS) in the embryo, and sink activity in the seed was reflected by the relative rate of starch synthesis (RRSS). These rates were compared to the activities of three enzymes of the starch biosynthetic pathway [sucrose synthase (Sus), ADP-glucose pyrophosphorylase and starch synthase] at three developmental stages during seed filling (25, 50 and 75% of the dry seed weight). Complete sets of data collected during seed filling for the nine genotypes showed that, for all enzyme activities (expressed on a protein basis), only Sus in the embryo and seed coat was linearly and significantly correlated to RRSS. The contribution of the three enzyme activities to the variability in RSS and RRSS was evaluated by multiple regression analysis for the first two developmental stages. Only Sus activity in the embryo could explain, at least in part, the significant variability observed for both the RSS and the RRSS at each developmental stage. We conclude that Sus activity is a reliable marker of sink activity in developing pea seeds.  相似文献   

20.
Several lines of evidence indicate that the partitioning of photosynthate between starch and sucrose is influenced by the relative concentrations of inorganic phosphate (Pi) in the cytosol and chloroplast. Two greenhouse experiments were conducted to determine the influence of long-term differences in soil P levels, ranging from deficient to supraoptimum, on leaf starch and sucrose concentrations, and activities of adenosine diphosphate glucose (ADPG) pyrophosphorylase and sucrose-phosphate synthase (SPS) during the grain filling period in soybean (Glycine max [L.] Merr.). It was hypothesized that, compared with optimum P nutrition, leaf starch and sucrose concentrations would be increased and decreased, respectively, for P deficiency and visa versa for supraoptimum P nutrition. Relative to the optimum soil P level, leaf Pi concentration was not altered by P deficiency but was increased two- to fourfold for the supraoptimum soil P treatment. The concentrations of leaf starch and sucrose were not markedly affected by any of the P fertility treatments and were not closely related to the activities of ADPG pyrophosphorylase and SPS. P deficiency resulted in increased activity of both enzymes in one of the experiments. The results indicated that long-term soil P treatments, that caused either large decreases in plant growth (P deficiency) or large increases in leaf Pi concentration (supraoptimum P), did not markedly alter starch and sucrose metabolism. Furthermore, it can be inferred that the method of plant culture and/or imposition of the P treatments is a critical factor in interpreting results of P nutrition studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号