首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A (13)--D-glucan 3-glucanonydrolase (EC 3.2.1.39) of apparent M r 32 000, designated GII, has been purified from germinated barley grain and characterized. The isoenzyme is resolved from a previously purified isoenzyme (GI) on the basis of differences in their isoelectric points; (13)--glucanases GI and GII have pI values of 8.6 and 10.0, respectively. Comparison of the sequences of their 40 NH2-terminal amino acids reveals 68% positional identity. A 1265 nucleotide pair cDNA encoding (13)--glucanase isoenzyme GII has been isolated from a library prepared with mRNA of 2-day germinated barley scutella. Nucleotide sequence analysis of the cDNA has enabled the complete primary structure of the 306 amino acid (13)--glucanase to be deduced, together with that of a putative NH2-terminal signal peptide of 28 amino acid residues. The (13)--glucanase cDNA is characterized by a high (G+C) content, which reflects a strong bias for the use of G or C in the wobble base position of codons. The amino acid sequence of the (13)--glucanase shows highly conserved internal domains and 52% overall positional identity with barley (13, 14)--glucanase isoenzyme EII, an enzyme of related but quite distinct substrate specificity. Thus, the (13)--glucanases, which may provide a degree of protection against microbial invasion of germinated barley grain through their ability to degrade fungal cell wall polysaccharides, appear to share a common evolutionary origin with the (13, 14)--glucanases, which function to depolymerize endosperm cell walls in the germinated grain.  相似文献   

3.
A cDNA clone (pBLT63) encoding a protein synthesis elongation factor 1 (EF-1) was isolated from a low-temperature winter barley shoot meristem library by differential screening. The nucleotide sequence of the coding region of the low-temperature-induced barley gene shows very high homology with two EF-1 plant genes from tomato and Arabidopsis. The barley genome contains an EF-1 gene family situated on the short arm of chromosome 2 and the long arm of chromosome 5. The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number Z23130.  相似文献   

4.
Members of the (13)--glucan glucanohydrolase (EC 3.2.1.39) gene family have been mapped on the barley genome using three doubled haploid populations and seven wheat-barley addition lines. Specific probes or polymerase chain reaction (PCR) primers were generated for the seven barley (13)--glucanase genes for which cDNA or genomic clones are currently available. The seven genes are all located on the long arm of chromosome 3 (3HL), and genes encoding isoenzymes GI, GII, GIII, GIV, GV and GVII (ABG2) are clustered in a region less than 20 cM in length. The region is flanked by the RFLP marker MWG2099 on the proximal side and the Barley Yellow Mosaic Virus (BYMV) resistance gene ym4 at the distal end. The gene encoding isoenzyme GVI lies approximately 50 cM outside this cluster, towards the centromere. With the exception of the gene encoding isoenzyme GIV, all of the (13)--glucanase genes are represented by single copies on the barley genome. The probe for the isoenzyme GIV gene hybridized with four DNA bands during Southern blot analysis, only one of which could be incorporated into the consensus linkage map.  相似文献   

5.
A (13, 14)--glucan 4-glucanohydrolase [(13, 14)--glucanase, EC 3.2.1.73] was purified to homogeneity from extracts of germinated wheat grain. The enzyme, which was identified as an endohydrolase on the basis of oligosaccharide products released from a (13, 14)--glucan substrate, has an apparent pI of 8.2 and an apparent molecular mass of 30 kDa. Western blot analyses with specific monoclonal antibodies indicated that the enzyme is related to (13, 14)--glucanase isoenzyme EI from barley. The complete primary structure of the wheat (13, 14)--glucanase has been deduced from nucleotide sequence analysis of cDNAs isolated from a library prepared using poly(A)+ RNA from gibberellic acid-treated wheat aleurone layers. One cDNA, designated LW2, is 1426 nucleotide pairs in length and encodes a 306 amino acid enzyme, together with a NH2-terminal signal peptide of 28 amino acid residues. The mature polypeptide encoded by this cDNA has a molecular mass of 32085 and a predicted pI of 8.1. The other cDNA, designated LW1, carries a 109 nucleotide pair sequence at its 5 end that is characteristic of plant introns and therefore appears to have been synthesized from an incompletely processed mRNA. Comparison of the coding and 3-untranslated regions of the two cDNAs reveals 31 nucleotide substitutions, but none of these result in amino acid substitutions. Thus, the cDNAs encode enzymes with identical primary structures, but their corresponding mRNAs may have originated from homeologous chromosomes in the hexaploid wheat genome.  相似文献   

6.
7.
Expression sites of genes encoding (13,14)--glucan 4-glucanohydrolase (EC 3.2.1.73) have been mapped in germinated barley grains (Hordeum vulgare L.) by hybridization histochemistry. A32P-labelled cDNA (copy DNA) probe was hybridized to cryosections of intact barley grains to localize complementary mRNAs. No mRNA encoding (13,14)--glucanase is detected in ungerminated grain. Expression of (13,14)--glucanase genes is first detected in the scutellum after 1 d and is confined to the epithelial layer. At this stage, no expression is apparent in the aleurone. After 2 d, levels of (13,14)--glucanase mRNA decrease in the scutellar epithelium but increase in the aleurone. In the aleurone layer, induction of (13,14)--glucanase gene expression, as measured by mRNA accumulation, progresses from the proximal to distal end of the grain as a front moving away from, and parallel to, the face of the scutellum.Abbreviations cDNA copy DNA - RNase ribonuclease  相似文献   

8.
Summary Protoplasts isolated from the aleurone have been used extensively in molecular studies focusing on hormone-mediated regulation of gene expression in barley seed. To extend the use of aleurone protoplasts to other species, we have determined the conditions necessary for the isolation of protoplasts from rice aleurone layers of germinated seed. Many of the common cell wall degrading enzymes used in making protoplasts were tested for their ability to release protoplasts from rice aleurone layers. Cellulysin was found to be the most effective. Transformation of these aleurone protoplasts was accomplished using polyethylene glycol and DNA constructs containing the firefly luciferase reporter gene under the control of two different promoters were tested. Luciferase expression was 24-fold greater when the reporter gene was under the control of the CaMV 35S promoter than when the promoter from the alcohol dehydrogenase 1 gene was used. With the isolation and transformation of aleurone protoplasts from rice, it is now possible to investigate molecular events occurring in this tissue during germination.  相似文献   

9.
A gene coding for a barley CMd protein was isolated from a genomic library using a cDNA probe encoding the wheat CM3 protein. Promoter sequence analysis reveals motifs found in genes specifically expressed in endosperm and aleurone cells, as well as TATA and other putative functional boxes. 720 bp of the Hv85.1 CMd protein gene promoter, when fused to a gus coding region, were unable to direct GUS activity in the seeds of transgenic tobacco plants. In contrast, the same construction delivered into immature maize kernels by microprojectile bombardment was able to direct expression of GUS in the outermost cell layers of maize endosperm in both a tissue-specific and a developmentally determined manner.  相似文献   

10.
11.
12.
13.
14.
cDNA cloning and expression of a potato (Solanum tuberosum) invertase   总被引:10,自引:0,他引:10  
A cDNA clone encoding an invertase isoenzyme has been isolated from a potato leaf cDNA library. The deduced amino acid sequence shows significant similarities to previously characterised invertases. The highest degree of overall similarity, including the signal peptide sequence, is to carrot cell wall invertase, suggesting that the potato gene encodes an apoplastic enzyme. Expression of the gene, as determined by RT-PCR, is detected in stem and leaf tissue, and at lower levels in tuber, but is absent from roots.  相似文献   

15.
16.
17.
Barley aleurone layer cell protoplasts as a transient expression system   总被引:4,自引:0,他引:4  
Protoplasts were prepared from barley aleurone layers using Onozuka cellulase digestion and purification through a Percoll gradient. Protoplasts prepared by this procedure had a viability ranging from 60% to 80% during the first two days of culture. They were responsive to gibberellic acid (GA) as measured by the stimulation of -amylase synthesis. The GA stimulation was counteracted by abscisic acid (ABA). In the presence of polyethylene glycol (PEG), the protoplasts took up exogenously added plasmid DNA containing the reporter gene coding for chloramphenicol acetyl transferase (CAT) linked to a 35S promoter from cauliflower mosaic virus (CaMV) or to barley -amylase gene promoters and expressed CAT activity. Therefore, barley aleurone layer protoplasts are suitable for analysis of hormoneresponsive elements in hydrolase genes.  相似文献   

18.
Relative levels of different -amylase mRNAs were assessed by primer extension experiments using RNA prepared from aleurone of barley (Hordeum vulgare L. cv. Himalaya). Three different aleurone systems were studied: protoplasts prepared from aleurone layers, isolated aleurone layers, and aleurone from germinated grain. Oligonucleotide primers specific for the low-pI and high-pI -amylase groups allowed the levels of different -amylase mRNAs to be assessed both within and between the two groups.In all aleurone systems the same set of -amylase mRNAs was produced in response to either applied gibberellic acid (aleurone protoplasts, isolated aleurone layers) or, presumably, native gibberellin(s) (germinated grain). This result indicates that the same set of genes is being expressed in each case. Differences were observed between the different aleurone systems in regulation of levels of -amylase mRNAs. In particular, the regulation of -amylase mRNA levels in aleurone of germinated grain has unique features which are not adequately explained by the response of isolated aleurone layers to gibberellic acid.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号