首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Three corn (Zea mays L.) lines resistant to imidazolinone herbicides were developed by in vitro selection and plant regeneration. For all three lines, resistance is inherited as a single semidominant allele. The resistance alleles from resistant lines XA17, XI12, and QJ22 have been crossed into the inbred line B73, and in each case homozygotes are tolerant of commercial use rates of imidazolinone herbicides. All resistant selections have herbicide-resistant forms of acetohydroxyacid synthase (AHAS), the known site of action of imidazolinone herbicides. The herbicide-resistant phenotypes displayed at the whole plant level correlate directly with herbicide insensitivity of the AHAS activities of the selections. The AHAS activities from all three selections have normal feedback regulation by valine and leucine, and plants containing the mutations display a normal phenotype.  相似文献   

2.
Maize (Zea mays L.) is a commercially important crop. Its yield can be reduced by mutations in biosynthetic and degradative pathways that cause death. In this paper, we describe the necrotic leaf (nec-t) mutant, which was obtained from an inbred line, 81647. The nec-t mutant plants had yellow leaves with necrotic spots, reduced chlorophyll content, and the etiolated seedlings died under normal growth conditions. Transmission electron microscopy revealed scattered thylakoids, and reduced numbers of grana lamellae and chloroplasts per cell. Histochemical staining suggested that spot formation of nec-t leaves might be due to cell death. Genetic analysis showed that necrosis was caused by the mutation of a recessive locus. Using simple sequence repeat markers, the Nec-t gene was mapped between mmc0111 and bnlg2277 on the short arm of chromosome 2. A total of 1287 individuals with the mutant phenotype from a F2 population were used for physical mapping. The Nec-t gene was located between markers T31 and H8 within a physical region of 131.7 kb.  相似文献   

3.
The hypothesis that electric and hydraulic long-distance signals modify photosynthesis and stomatal aperture upon re-irrigation in intact drought-stressed plants was examined. Maize plants (Zea mays L.) were exposed to drought conditions by decreasing the soil water content to 40-50% of field capacity. The decrease in water content resulted in a decline in stomatal conductance to 50-60% of the level in well-watered plants. Re-irrigation of the plants initiated both hydraulic and electric signals, followed by a two-phase response of the net CO2 uptake rate and stomatal conductance of leaves. The transitional first phase (phase 1) is characterized by a rapid decrease in both levels. In the second phase (phase 2), both parameters gradually increase to levels above those of drought-stressed plants. Elimination of either the hydraulic signal by compensatory pressure application to the root system, or of the electric signal by cooling of the leaf blade gave evidence that the two signals (1) propagated independently from each other and (2) triggered the two-phase response in leaf gas exchange. The results provided evidence that the hydraulic signal initiated a hydropassive decrease in stomatal aperture and for the involvement of electric signals in the regulation of photosynthesis of drought-stressed plants.  相似文献   

4.
Li K  Xu C  Zhang K  Yang A  Zhang J 《Proteomics》2007,7(9):1501-1512
Phosphorus (P) deficiency is a major limitation for plant growth and development. Plants can respond defensively to this stress, modifying their metabolic pathways and root morphology, and this involves changes in their gene expression. To better understand the low P adaptive mechanism of crops, we conducted the comparative proteome analysis for proteins isolated from maize roots treated with 1000 microM (control) or 5 microM KH2PO4 for 17 days. The results showed that approximately 20% of detected proteins on 2-DE gels were increased or decreased by two-fold or more under phosphate (Pi) stress. We identified 106 differentially expressed proteins by MALDI-TOF MS. Analysis of these P starvation responsive proteins suggested that they were involved in phytohormone biosynthesis, carbon and energy metabolisms, protein synthesis and fate, signal transduction, cell cycle, cellular organization, defense, secondary metabolism, etc. It could be concluded that they may play important roles in sensing the change of external Pi concentration and regulating complex adaptation activities for Pi deprivation to facilitate P homeostasis. Simultaneously, as a basic platform, the results would also be useful for the further characterization of gene function in plant P nutrition.  相似文献   

5.
Summary Routine procedures for the isolation of large numbers of protoplasts from an established cell culture of Zea mays and for the induction of sustained divisions leading to secondary cell cultures have been developed. The critical factors seem to be associated with neither specific enzymatic conditions for the isolation nor specific culture conditions for the protoplasts but with the quality of the culture used for protoplast isolation.  相似文献   

6.
玉米幼苗根际土壤微生物活性对芘污染的响应   总被引:1,自引:0,他引:1  
许超  夏北成 《生态学报》2010,30(5):1296-1305
用根际袋法土培试验研究了玉米幼苗根际与非根际土壤微生物量碳、微生物熵、代谢熵和土壤酶活性对不同芘污染水平(50、200、800mg·kg-1,记为T1、T2、T3)的响应差异。结果表明,较低浓度芘可适当的刺激玉米幼苗的生长,而较高浓度芘则抑制幼苗生长,其抑制作用随芘处理浓度的提高而增强;芘对玉米根系的影响要大于对茎叶的影响。玉米幼苗能够明显促进土壤中芘的去除。根际和非根际土壤中芘的去除率分别为56.67%-76.18%和32.64%-70.44%,根际土壤中芘的平均去除率比非根际土壤高16.06%。同处理中根际土壤芘含量显著低于非根际土壤,随着芘处理浓度的提高其差异更加显著。根际土壤微生物量碳、微生物熵、多酚氧化酶活性、脱氢酶活性和磷酸酶活性均高于非根际土壤,代谢熵低于非根际土壤,且其差异随芘处理浓度的提高而增大。在不同芘污染水平下,微生物量碳、微生物熵和脱氢酶活性根际和非根际土壤为T1T2T3,代谢熵为T3T2T1;多酚氧化酶活性根际土壤为T2T1T3,非根际土壤为T1T2T3;磷酸酶活性根际土壤为T3T1T2,非根际土壤为T1T2T3。土壤中残余芘含量与土壤微生物量碳、微生物熵、多酚氧化酶、脱氢酶和磷酸酶活性呈显著负相关,与代谢熵呈显著正相关。  相似文献   

7.
Salt tolerance of maize (Zea mays L.): the role of sodium exclusion   总被引:5,自引:2,他引:3  
The influence of NaCl and Na2SO4 on growth of two maize cultivars (Zea mays cv. Pioneer 3906 and cv. Across 8023) differing in Na+ uptake was investigated in two green-house experiments. Na+ treatment with different accompanying anions (Cl?/SO42?) showed that ion toxicity was caused by Na+. While shoot growth of the two cultivars was markedly affected by salt in comparison to the control during the first 2–3 weeks, there were only slight differences between the cultivars. The shoot Ca2+ concentration was reduced in both cultivars, and the youngest leaves contained an even lower concentration compared with the rest of the shoot. During this first phase, Across 8023 tended to have higher concentrations of Ca2+ than Pioneer 3906. The Na+-excluding cultivar Pioneer 3906 showed continuous, although reduced, growth compared with the control, while the Na+ concentration in the shoot decreased until flowering. Cultivar Across 8023 accumulated Na+ until flowering: the reduction in the growth of stressed plants was greater than that for Pioneer 3906. Leaves of cultivar Across 8023 showed clear toxic symptoms, while those of the more salt-tolerant cultivar Pioneer 3906 did not. It is concluded that Na+ exclusion contributes to the salt tolerance of maize.  相似文献   

8.
Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid‐day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.  相似文献   

9.
10.
The effects of various environmental conditions on the initiation of tassel branches (NTB) and spikelet‐pairs (NSP) were examined in the stress‐sensitive maize inbred F53. Chilling induced the most important effect, with a dramatic decrease in both NTB and NSP, provided it was applied at the end of the vegetative phase and start of the floral transition phase. The primary cause of chilling‐induced abortion of the tassel branches could be oxidative stress in the leaves, since lowering light irradiance during chilling greatly reduced the effect of cold. The comparison of inbreds F53 and F2 revealed that both genotypes exhibited a similar period of cold sensitivity at the floral transition phase, although F2 was considered from field observations as a stress‐insensitive genotype (at least for tassel development). However, our results also showed a chilling acclimation response in inbred F2 but not in inbred F53. The similarities with the work by Lejeune & Bernier (1996 Plant, Cell and Environment 19, 217–224.) concerning the effect of chilling on ear initiation in the sensitive inbred, B22, are emphasized.  相似文献   

11.
Reidenbach  Gerd  Horst  Walter J. 《Plant and Soil》1997,196(2):295-300
The close relationship between nitrate depletion of the subsoil and root-length densities found in field experiments could not be explained by mathematical models simulating nitrate uptake (Wiesler and Horst, 1994). The objective of the present study was the validation of some of the assumptions made in these models namely uniform nitrate-uptake rates (NURs) independent on root age and daytime.Different techniques were developed and compared for the measurement of NUR of different root zones: (i) isolated root segments, (ii) compartmented uptake cuvettes, (iii) depletion of nitrate (water) from agarose blocks placed on specific zones of roots growing in nutrient solution and (iv) in rhizotrones filled with soil over the whole growing cycle of maize plants. All methods yielded a similar magnitude of NUR (10 - 30 pmol cm-2 s-1). However, only intact plants growing in nutrient solution as well as in soil, but not isolated root segments, showed higher NUR at apical root zones compared to more mature branching root zones by a factor of 2 - 8. The NUR of the root apex was particularly sensitive to the nitrogen demand of the plant and the assimilate supply from the shoots as affected by light intensity. At suboptimal, but not at optimal light conditions during preculture, NUR was lower in the dark than in the light. As plants matured, NUR of soil grown plants became increasingly dependent on water uptake. But even if nitrate uptake by mass flow was subtracted from total nitrate uptake, mature roots showed a surprisingly high nitrate-uptake capacity.The results indicate that the formation of root-age classes with different NUR and the assumption of lower NUR at night could improve the modelling of nitrate uptake.  相似文献   

12.
The effects of ultradry storage on the starch mobilization in maize (Zea mays L.) seed after aging were investigated. The results indicated that there were no significant differences in the content of ATP,starch, and soluble sugar, as well as the activity of amylase, between ultradried seeds and seeds stored at -20 ℃ during germination. These results were consistent with the higher level of vigor of the ultradried seed. Sieve tube introduction of a fluorescence dye (carboxyl fluoresceindiacetate) and laser confocal microscopy were used to study the development of plasmodesmata in the ultradried seeds. The results indicated that plasmodesmata developed well in ultradried seeds. Fluorescence analysis also showed that the fluorescence intensity in the radicle of ultradried seeds was stronger than that in seeds with a higher moisture content. This suggests that ultradry treatment has no adverse effects on the seeds. After seed imbibition, cell orgaelles could be resumed. It is concluded that ultradry seed storage is beneficial for maintaining seed vigor and that starchy mobilization proceeds regularly during germination.  相似文献   

13.
14.
The effects of ultradry storage on the starch mobilization in maize (Zea mays L.) seed after aging were investigated. The results indicated that there were no significant differences in the content of ATP, starch, and soluble sugar, as well as the activity of amylase, between ultradried seeds and seeds stored at -20℃ during germination. These results were consistent with the higher level of vigor of the ultradried seed. Sieve tube introduction of a fluorescence dye (carboxyl fluoresceindiacetate) and laser confocal microscopy were used to study the development of plasmodesmata in the ultradried seeds. The results indicated that plasmodesmata developed well in ultradried seeds. Fluorescence analysis also showed that the fluorescence intensity in the radicle of ultradried seeds was stronger than that in seeds with a higher moisture content. This suggests that ultradry treatment has no adverse effects on the seeds. After seed imbibition, cell orgaelles could be resumed. It is concluded that ultradry seed storage is beneficial for maintaining seed vigor and that starchy mobilization proceeds regularly during germination.  相似文献   

15.
利用cDNA-AFLP技术分离了一个与玉米基因表达沉默有关的cDNA片段,Northern杂交分析表明,该基因在Mo17的苗期和雄穗生长锥伸长期都表达,但在Mo17与其亲缘关系较近的另一亲本杂交的F1代中却表现沉默,即表现单亲沉默。同源性分析表明,该克隆片段与GenBank中玉米通用调控因子(GRF)部分区段有98.6%的同源性,与玉米通用调控因子编码的mRNA部分序列有83%的同源性。以上结果表明,基因沉默可能是亲本GRF在F  相似文献   

16.
Field research was conducted on four Atlantic Coastal Plain soils in the United States to evaluate response of corn (Zea mays L.) plants to Mn application. The soils under study were classified as either Aeric or Typic Ochraquults. Manganese application increased corn grain yields by an average of 1195 kg ha–1 on the four soils. The average grain yields on the soils were 7955 kg ha–1 for the control and 9150 kg ha–1 for the +Mn treatment. A Mitscherlich plant growth model was used to establish relationships between percent maximum grain yield and Mn concentration in the ear leaf at early silk (r=0.87, =0.01) and in the mature grain (r=0.58, =0.01). Based on 90% of maximum yield as the definition of the critical deficiency level, the critical Mn deficiency levels calculated with parameters from the Mitscherlich model were 10.6 mg kg–1 in the ear leaf and 4.9 mg kg–1 in the grain.  相似文献   

17.
18.
Summary Comparison of different post-plating temperature regimes with a control treatment (27° C) revealed that a short-term cold (8/14°C:2/2 days or 14°C:4 days) as well as a heat treatment (30°C:14 days) increased the production of embryro-like-structures (ELS) from cultured maize anthers. The beneficial effects of short-term cold treatments were magnified 2–3 times when L-proline (PROL) was added to the induction medium (125–500 mg/L). In the best treatment (14°C:4 days, 125 mg/L L-proline) one genotype produced 143.5 ELS/100 anthers. Anthers subjected to high temperature (30°C:4 days, 30°C:7 days, 30°C:14 days) generally showed a lower response than did cold treated anthers, although genotypic differences were observed. Regeneration frequency did not appear to be affected by the presence of L-proline in the induction medium.Abbreviations ELS Embryo-like-structures - PROL L-proline  相似文献   

19.
The sink demand was increased on a source maize leaf ( Zea mays L. cv. F7F2) by darkening all the leaves except the fourth, which was maintained under the prevailing irradiance conditions. The parameters of carbon metabolism were measured precisely during the first hours, and then daily during one week. The ambient photosynthetic activity and the maximum photosynthetic capacity were not altered by the treatment but the soluble carbohydrate and starch contents diminished, while ADP-glucose pyrophosphorylase (EC 2.7.7.27) activity increased. The carbon export rate, evaluated by the rate of disappearance of radioactivity after a 1-min 14CO2 pulse, was faster than in control leaves. A compartmental analysis of the time course of 14C export further indicated that the sucrose pool providing the export flux was largely increased by the dark treatment. The darkened leaf 5, taken as an example of the darkened sources, was completely depleted of its carbohydrate content after one day in the dark and remained devoid of carbohydrates during the following week.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号