首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J R Korenberg  M C Rykowski 《Cell》1988,53(3):391-400
Combining high resolution in situ hybridization with quantitative solid state imaging, we show that human metaphase chromosome Giemsa/Quinacrine and Reverse bands are each characterized by distinct families of interspersed repeated sequences: the SINES, Alu family dominates in Reverse bands, and the LINES, L1 family dominates in Giemsa/Quinacrine positive bands. Alu is 56% guanine plus cytosine, and L1 is 58% adenine plus thymine, and each may comprise 13%-18% of the total DNA in a chromosome band. Therefore, the distribution of these sequences alone may account for a large part of human chromosome banding seen with fluorescent dyes. With the exception of some telomeric regions, and the chromosomal regions of simple sequence DNA, Alu and L1 are precisely inversely distributed, suggesting an inverse functional relationship. This finding links genome organization with chromosome structure and function.  相似文献   

2.
Human spermidine synthase gene: structure and chromosomal localization   总被引:3,自引:0,他引:3  
The human spermidine synthase (EC 2.5.1.16) gene was isolated from a genomic library constructed with DNA obtained from a human immunoglobulin G (IgG) myeloma cell line. Subsequent sequence analyses revealed that the gene comprised of 5,818 nucleotides from the cap site to the last A of the putative polyadenylation signal with 8 exons and 7 intervening sequences. The 5'-flanking region of the gene was extremely GC rich, lacking any TATA box but containing CCAAT consensus sequences. No perfect consensus sequence for the cAMP-responsive element for the AP-1 binding site was found, yet the gene contained seven AP-2 binding site consensus sequences. The putative polyadenylation signal was an unusual AATACA instead of AATAAA. Polymerase chain reaction analysis with DNA obtained from human x hamster somatic cell hybrids indicated that human spermidine synthase genomic sequences segregate with human chromosome 1. Transfection of the genomic clone into Chinese hamster ovary cells displaying a low endogenous spermidine synthase activity revealed that the gene was transiently expressed and hence in all likelihood represents a functional gene.  相似文献   

3.
The primary structure of human C1 inhibitor was determined by peptide and DNA sequencing. The single-chain polypeptide moiety of the intact inhibitor is 478 residues (52,869 Da), accounting for only 51% of the apparent molecular mass of the circulating protein (104,000 Da). The positions of six glucosamine-based and five galactosamine-based oligosaccharides were determined. Another nine threonine residues are probably also glycosylated. Most of the carbohydrate prosthetic groups (probably 17) are located at the amino-terminal end (residues 1-120) of the protein and are particularly concentrated in a region where the tetrapeptide sequence Glx-Pro-Thr-Thr, and variants thereof, is repeated 7 times. No phosphate was detected in C1 inhibitor. Two disulfide bridges connect cysteine-101 to cysteine-406 and cysteine-108 to cysteine-183. Comparison of the amino acid and cDNA sequences indicates that secretion is mediated by a 22-residue signal peptide and that further proteolytic processing does not occur. C1 inhibitor is a member of the large serine protease inhibitor (serpin) gene family. The homology concerns residues 120 through the C-terminus. The sequence was compared with those of nine other serpins, and conserved and nonconserved regions correlated with elements in the tertiary structure of alpha 1-antitrypsin. The C1 inhibitor gene maps to chromosome 11, p11.2-q13. C1 inhibitor genes of patients from four hereditary angioneurotic edema kindreds do not have obvious deletions or rearrangements in the C1 inhibitor locus. A HgiAI DNA polymorphism, identified following the observation of sequence variants, will be useful as a linkage marker in studies of mutant C1 inhibitor genes.  相似文献   

4.
Partial molecular genetic map of the rabbit VH chromosomal region   总被引:6,自引:0,他引:6  
Thirty VH-containing cosmid clones, isolated from rabbit germ-line DNA libraries, were restriction mapped and shown to contain approximately 100 VH genes in 765-kb of DNA. Twenty-two of the cosmid clones were grouped into seven distinct clusters. The VH genes were separated by an average of 8 kb, although some were separated by less than 3 kb. Comparison of the nucleotide sequences of two of these VH genes with the sequences of another 11 VH genes showed that they were all generally more than 80% homologous suggesting that rabbit VH genes are members of one highly homologous gene family. Most rabbit Ig molecules have the VH allotypic specificities a1, a2, or a3 and are designated VHa-positive. A small number (less than 30%) of Ig molecules lack these VHa allotypic specificities and are designated VHa-negative. The VH containing cosmid clones were hybridized with synthetic oligomer probes designed to be specific for genes encoding VHa-positive or VHa-negative molecules. At least 50% of the germ-line VH genes hybridized with the VHa-negative oligomer and thus presumably encode VHa-negative molecules; as few as 15% of the genes could be identified as encoding VHa-positive molecules based on hybridization with the VHa-positive oligomer. Approximately 35% of the VH genes did not hybridize with either oligomer and could not be classified as VHa-negative or VHa-positive. We propose that the predominance of serum VHa-positive molecules, in contrast to the predominance of VHa-negative encoding germ-line genes, may reflect preferential usage of a few germline VH genes. The implications of this idea toward explaining the allelic inheritance of VHa allotypes are discussed.  相似文献   

5.
The cellular homologs of the ets gene from the avian erythroblastosis retrovirus E26 have been studied in chickens, humans, mice, and cats. In this report a further evolutionary step is taken by isolating and characterizing a Drosophila ets-related genomic clone. Sequence analysis of this clone has shown it to contain the 3' end of the v-ets gene, called ets-2, corresponding to the last two exons of chicken ets. The predicted amino acid sequence was found to have over 90% homology when compared to that of v-ets. This is the highest level of conservation observed for any previously characterized Drosophila oncogene homolog. Expression of the ets-2 gene occurs throughout development, but is highest during the embryonic and pupal stages. By in situ hybridization, the ets-2 chromosomal position was determined to be 58A/B which corresponds to no known phenotypic mutant. As this is a highly conserved gene, the Drosophila model system should prove useful for the determination of the ets gene function.  相似文献   

6.
A complementary DNA clone encoding the entire human long-chain acyl-CoA synthetase was isolated and the total 698-amino acid sequence was deduced. The amino acid sequence of human long-chain acyl-CoA synthetase shows 84.9% identity to that of rat long-chain acyl-CoA synthetase. The nucleotide sequences of the protein coding regions between human and rat long-chain acyl-CoA synthetase mRNAs are highly conserved (85.6%), whereas those of the 3' untranslated regions are less conserved (72%). The location of the human long-chain acyl-CoA synthetase gene was identified on chromosome 4 by spot hybridization of flow-sorted chromosomes. Computer-assisted homology search revealed a significant similarity of the enzyme with the enzymes of the luciferase family. Based on this similarity, the structure of human long-chain acyl-CoA synthetase can be divided into five domains: the N-terminus, two domains similar to those in enzymes of the luciferase family, a long gap region between the similar domains and the C-terminus.  相似文献   

7.
The distribution of chromosomal Q-polymorphic bands was studied in different human populations. The populations studied showed no differences in the relative amount of Q bands in all the 12 polymorphic loci of seven autosomes, but interpopulation differences did exist in the absolute amount of Q bands in all the 12 potentially polymorphic loci of seven autosomes, these differences consisting of uniform increases or decreases in this absolute amount. Comparisons of the mean number of Q-heterochromatin bands with fluorescence levels 4 and 5 per individual showed a consistent prevalence of this quantitative parameter of chromosomal Q polymorphism in females as compared to males in all the national groups. It is suggested that there is some dosage compensation of chromosomal Q-heterochromatin material in females due to the absence of a chromosome in their genome, which is able to "compensate" for the large Q band in chromosome Y which is present only in the karyotype of males.  相似文献   

8.
Human Tumor Necrosis Factor and Lymphotoxin are cytotoxic proteins which have similar biological activities and share 30 percent amino acid homology. The single copy genes which encode these proteins share several structural features: each gene is approximately three kilobase pairs in length and is interrupted by three introns. In addition, these genes are closely linked and have been mapped to human chromosome 6. However, only the last exons of both genes, which code for more than 80 percent of each secreted protein, are significantly homologous (56 percent).  相似文献   

9.
10.
Human lactase purified from detergent extracts of the total membrane fraction of postmortem jejunum by means of monoclonal immunoadsorbent chromatography appears to be a dimer of subunits identical in Mr (160K). Trypsin or papain removes a small hydrophobic anchoring peptide from each subunit to give a hydrophilic enzyme which no longer interacts with detergent micelles. Lactase hydrolyzes, besides lactose, cellobiose and the synthetic substrates, 4-methylumbelliferyl--galactoside and -glucoside, as well as phlorizin; but it does not hydrolyze glucocerebroside. Phlorizin hydrolase is associated with lactase under all conditions investigated; coincident staining on immunodiffusion and immunoelectrophoresis, coincident elution on immunoadsorbent chromatography and on gel filtration in a dissociating buffer, and correlated reduction in activity in lactase-nonpersistent individuals. Adult and infant lactases are indistinguishable by titration or immunodiffusion against polyclonal rabbit antibodies. Adult individuals low in lactase activity also show a corresponding reduction in cross-reacting material. These observations suggest that lactase persistence is due to the continued synthesis of the infant enzyme.Financial support was provided by the Nuffield Foundation, the Medical Research Council, and the Open University Research Committee Fund.  相似文献   

11.
12.
13.
Inorganic phosphate (Pi) is fundamental to cellular metabolism and skeletal mineralization. Ingested Pi is absorbed by the small intestine, deposited in bone, and filtered by the kidney where it is reabsorbed and excreted in amounts determined by the specific needs of the organism. Two distinct renal Na-dependent Pi transporters, type IIa (NPT2a, SLC34A1) and type IIc (NPT2c, SLC34A3), are expressed in brush border membrane of proximal tubular cells where the bulk of filtered Pi is reabsorbed. Both are regulated by dietary Pi intake and parathyroid hormone. Regulation is achieved by changes in transporter protein abundance in the brush border membrane and requires the interaction of the transporter with scaffolding and signaling proteins. The demonstration of hypophosphatemia secondary to decreased renal Pi reabsorption in mice homozygous for the disrupted type IIa gene underscores its crucial role in the maintenance of Pi homeostasis. Moreover, the recent identification of mutations in the type IIc gene in patients with hereditary hypophosphatemic rickets with hypercalciuria attests to the importance of this transporter in Pi conservation and subsequent skeletal mineralization. Two novel Pi regulating genes, PHEX and FGF23, play a role in the pathophysiology of inherited and acquired hypophosphatemic skeletal disorders and studies are underway to define their mechanism of action on renal Pi handling in health and disease.  相似文献   

14.
Null mutations in the glucokinase (GCK) gene can cause autosomal dominant type 2 diabetes (maturity onset diabetes of the young, MODY); however, MODY is genetically heterogeneous. In both liver and pancreatic islet, glucokinase is subject to inhibition by a regulatory protein (GCKR). Given the role of GCK in MODY, GCKR is itself a candidate type 2 diabetes susceptibility gene. Here we describe the structure of full-length (2.2 kb) cDNA for human GCKR, from the hepatoblastoma cell line HepG2. The human GCKR translation product has 625 amino acids and a predicted molecular weight of 68,700. It has 88% amino acid identity to rat GCKR. Yeast artificial chromosomes (YAC clones) containing human GCKR were isolated, and the gene was mapped to Chromosome (Chr) 2p23 by fluorescent in situ hybridization and somatic cell hybrid analysis.EMBL database accession numbers: Z48475 and Z48476.  相似文献   

15.
16.
Numerous data concerning nucleolar organizer region (NOR) structure and function in normal and pathological human cells are analysed. The contents of argentophilic nucleolar proteins vary in the cells tested. The silver-stained test is closely connected with cellular proliferative potentials and differentiation status of the cells. This test also depends on the level of tumor cell malignancy and seemed to be very useful for megakaryocyte and cardiomyocyte studies. In summary, the NOR silver-staining approach is of great value for both fundamental cytological investigations and wide medical practice.  相似文献   

17.
TileMap: create chromosomal map of tiling array hybridizations   总被引:12,自引:0,他引:12  
  相似文献   

18.
Hemoglobin is the most prominent protein in blood, transporting O(2) and facilitating reactive oxygen and nitrogen species detoxification. Hemoglobin metabolism leads to the release of extra-erythrocytic hemoglobin, with potentially severe consequences for health. Extra-erythrocytic hemoglobin is complexed to haptoglobin for clearance by tissue macrophages. The human gene for haptoglobin consists of three structural alleles: Hp1F, Hp1S and Hp2. The products of the Hp1F and Hp1S alleles differ by only one amino acid, whereas the Hp2 allele is the result of a fusion of the Hp1F and Hp1S alleles, is present only in humans and gives rise to a longer alpha-chain. Haptoglobin consists of a dimer of alphabeta-chains covalently linked by a disulphide bond between the Cys15 residue of each alpha-chain. However, the presence of the Hp1 and Hp2 alleles in humans gives rise to HPT1-1 dimers (covalently linked by Cys15 residues), HPT1-2 hetero-oligomers and HPT2-2 oligomers. In fact, the HPT2 variant displays two free Cys residues (Cys15 and Cys74) whose participation in intermolecular disulphide bonds gives rise to higher-order covalent multimers. Here, the complete modelling of both haptoglobin variants, together with their basic quaternary structure arrangements (i.e. HPT1 dimer and HPT2 trimer), is reported. The structural details of the models, which represent the first complete view of the molecular details of human haptoglobin variants, are discussed in relation to the known haptoglobin function(s).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号