首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Under normal circulation of the dog submandibular gland, the electrical stimulation induced a massive salivary secretion (about 0.35 ml . min-1.g-1 gland weight) and an increase in the glandular temperature (about 0.2 degrees C). The heat production was calculated of about 60 mW.g-1. 2. Clamping of the glandular artery made both of secretion and heat production to be transient. The early peak of secretion was about 0.12 ml.min-1.g and that of heat production was 7 approximately 10mW,g-1. Then each 1 ml secretion followed about 4.6 J heat production. 3. Under constant blood flow in the glandular circulation, the secretory process was divided clearly into 2 phases of peak and plateau. The glandular temperature increased about 0.12 degrees C with an early temperature drop. In the secretory plateau phase, the secretary rate was about 0.043 ml.min-1.g-1, the heat production was about 5 approximately 7 mW.g-1 and each 1 ml secretion caused about 8.2 J heat production. 4. The rate of oxygen uptake was about 20.9 microl.min-1g-1 at the resting state. The maximum during secretion was about 192 microliter.min-1.g-1. THe half time of the recovery process of O2 uptake tended slightly longer than that of heat production. 5. THe rate of CO2 output was about 21.8 microliter.min-1.g-1 at resting. The maximum during secretion was about 142 microliter.min-1.g-1 R. Q. were about 1 at resting and about 0.74 under secretion.  相似文献   

2.
Increased dependence on blood glucose after acclimatization to 4,300 m   总被引:5,自引:0,他引:5  
To evaluate the hypothesis that altitude exposure and acclimatization result in increased dependency on blood glucose as a fuel, seven healthy males (23 +/- 2 yr, 72.2 +/- 1.6 kg, mean +/- SE) on a controlled diet were studied in the postabsorptive condition at sea level (SL), on acute altitude exposure to 4,300 m (AA), and after 3 wk of chronic altitude exposure to 4,300 m (CA). Subjects received a primed continuous infusion of [6,6-2D]glucose and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the SL maximal O2 consumption (VO2 max; 65 +/- 2% of altitude VO2 max). At SL, resting arterial glucose concentration was 82.4 +/- 3.2 mg/dl and rose significantly to 91.2 +/- 3.2 mg/dl during exercise. Resting glucose appearance rate (Ra) was 1.79 +/- 0.02 mg.kg-1.min-1; this increased significantly during exercise at SL to 3.71 +/- 0.08 mg.kg-1.min-1. On AA, resting arterial glucose concentration (85.8 +/- 4.1 mg/dl) was not different from sea level, but Ra (2.11 +/- 0.14 mg.kg-1.min-1) rose significantly. During exercise on AA, glucose concentration rose to levels seen at SL (91.4 +/- 3.0 mg/dl), but Ra increased more than at SL (to 4.85 +/- 0.15 mg.kg-1.min-1; P less than 0.05). Resting arterial glucose was significantly depressed with CA (70.8 +/- 3.8 mg/dl), but resting Ra increased to 3.59 +/- 0.08 mg.kg-1.min-1, significantly exceeding SL and AA values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. Osmotic shock disrupts particles of phage T2 into material containing nearly all the phage sulfur in a form precipitable by antiphage serum, and capable of specific adsorption to bacteria. It releases into solution nearly all the phage DNA in a form not precipitable by antiserum and not adsorbable to bacteria. The sulfur-containing protein of the phage particle evidently makes up a membrane that protects the phage DNA from DNase, comprises the sole or principal antigenic material, and is responsible for attachment of the virus to bacteria. 2. Adsorption of T2 to heat-killed bacteria, and heating or alternate freezing and thawing of infected cells, sensitize the DNA of the adsorbed phage to DNase. These treatments have little or no sensitizing effect on unadsorbed phage. Neither heating nor freezing and thawing releases the phage DNA from infected cells, although other cell constituents can be extracted by these methods. These facts suggest that the phage DNA forms part of an organized intracellular structure throughout the period of phage growth. 3. Adsorption of phage T2 to bacterial debris causes part of the phage DNA to appear in solution, leaving the phage sulfur attached to the debris. Another part of the phage DNA, corresponding roughly to the remaining half of the DNA of the inactivated phage, remains attached to the debris but can be separated from it by DNase. Phage T4 behaves similarly, although the two phages can be shown to attach to different combining sites. The inactivation of phage by bacterial debris is evidently accompanied by the rupture of the viral membrane. 4. Suspensions of infected cells agitated in a Waring blendor release 75 per cent of the phage sulfur and only 15 per cent of the phage phosphorus to the solution as a result of the applied shearing force. The cells remain capable of yielding phage progeny. 5. The facts stated show that most of the phage sulfur remains at the cell surface and most of the phage DNA enters the cell on infection. Whether sulfur-free material other than DNA enters the cell has not been determined. The properties of the sulfur-containing residue identify it as essentially unchanged membranes of the phage particles. All types of evidence show that the passage of phage DNA into the cell occurs in non-nutrient medium under conditions in which other known steps in viral growth do not occur. 6. The phage progeny yielded by bacteria infected with phage labeled with radioactive sulfur contain less than 1 per cent of the parental radioactivity. The progeny of phage particles labeled with radioactive phosphorus contain 30 per cent or more of the parental phosphorus. 7. Phage inactivated by dilute formaldehyde is capable of adsorbing to bacteria, but does not release its DNA to the cell. This shows that the interaction between phage and bacterium resulting in release of the phage DNA from its protective membrane depends on labile components of the phage particle. By contrast, the components of the bacterium essential to this interaction are remarkably stable. The nature of the interaction is otherwise unknown. 8. The sulfur-containing protein of resting phage particles is confined to a protective coat that is responsible for the adsorption to bacteria, and functions as an instrument for the injection of the phage DNA into the cell. This protein probably has no function in the growth of intracellular phage. The DNA has some function. Further chemical inferences should not be drawn from the experiments presented.  相似文献   

4.
The rates of DNA elongation by wild-type phage T4 and a gene 52 DNA-delay am mutant were estimated by pulse-labeling infected cells with tritiated thymidine and visualizing the gently extracted DNA by autoradiography. The estimated rate of chain elongation of wild-type DNA was 749 nucleotides/second early in synthesis and 516 to 581 nucleotides/second at a later time. The rate of DNA elongation by the am mutant was measured to be 693, 758 and 829 nucleotides/second during successive stages of synthesis, indicating that elongation was not slower than in wild-type. The kinetics of DNA increase after infection of host cells by wild-type phage T4 or by the gene 52 DNA-delay am mutant was followed using [methyl-3H]thymidine uptake into acid-insoluble material. It was found that DNA increase in both wild-type and am infections could be represented as exponential during early times and linear during late times of DNA synthesis. From the rates of DNA increase and the rates of DNA elongation we were able to estimate the number of growing points per chromosome equivalent of template DNA during the exponential and linear phases. Our estimates for wild-type phage were 0.55 and 0.71 to 0.80 growing points per chromosome equivalent of template DNA in the exponential and linear phases, respectively. For the am mutant we found 0.14 and 0.12 to 0.13 growing points per chromosome equivalent of template DNA during the exponential and linear phases, respectively. The apparent lower incidence of growing points in the am mutant infections suggests that the mutant may be defective in the initiation of growing points.  相似文献   

5.
6.
Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr+ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one to two mutant phage per mutant burst. From this and the pathways of lambda DNA synthesis, it can be argued that non-targeted mutagenesis involves a loss of fidelity in semiconservative DNA replication. A series of experiments with various mutant host cells showed a major pathway of non-targeted mutagenesis by ultraviolet light, which acts in addition to "SOS induction" (where cleavage of the LexA repressor by RecA protease leads to din gene induction): (1) the induction of mutants has the same dependence on irradiation for wild-type and for umuC host cells; (2) a strain in which the SOS pathway is constitutively induced requires irradiation to the same level as wild-type cells in order to fully activate non-targeted mutagenesis; (3) non-targeted mutagenesis occurs to some extent in irradiated recA recB cells. In cells with very low levels of PolI, the induction of non-targeted mutagenesis by ultraviolet light is enhanced. We propose that the major pathway for non-targeted mutagenesis in irradiated host cells involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and that the low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.  相似文献   

7.
1. A nickel tube magneto-striction oscillator of 320 watts output producing sonic vibrations of 9,300 cycles per second frequency is described. Certain structural innovations contribute to operating efficiency and permit more convenient exposure of test materials than in earlier types. 2. The rate of phage inactivation by sonic waves proceeds logarithmically with time and serves as a satisfactory measure of energy output during operation of the generator. The curve for phage inactivation taking place in the presence of homologous staphylococci follows that for phage alone but soon reaches a plateau after which no further loss of activity is noted. In general higher concentrations of bacteria more effectively inhibit phage destruction than do lower concentrations. 3. Cells that have attained a resting state after a preliminary phase of rapid growth normally have the capacity of inducing a very rapid and marked increase in [phage] when added to phage. This effect has been attributed to the presence of intracellular phage precursor. The store of phage precursor in activated cells is destroyed by sonic waves in about 30 minutes. The number of cells (plate count) shows no reduction until after the precursor is entirely inactivated. 4. Attempts to extract phage precursor from activated staphylococci by exposing the cells to sonic vibrations were unsuccessful.  相似文献   

8.
The c2 repressor of phage P22 has been purified to homogeneity. It specifically binds to lambdaimm21 and P22 DNA. Its affinity for the presumed operator mutant P22 virB is reduced. The initial dissociation rates of the complex between c2 repressor and lambdaimm21 DNA are 0.02 min-1 at 0 degrees C, 0.08 min-1 at 20 degrees C and 0.17 min-1 at 32 degrees C. The dissociation rates of complexes formed between the c2 repressor and the lambdaimm21 operators OR, OL and OR vira were measured and compared to the corresponding rates obtained with 21 cI repressor.  相似文献   

9.
In this study the hypothesis considering the requirement for an electrochemical proton gradient in the injection of phage T4 DNA into Escherichia coli cell has been verified experimentally. The phage caused a reversible depolarization of cell membrane, while phage 'ghosts' induced an irreversible depolarization. The phage infection was strictly dependent on E. coli membrane potential value when phage/cell ratio was 5 and higher. When the ratio was close to 1, the decrease in the membrane potential up to -100 mV caused practically no effect on the phage infection. The infection inhibition was observed when the membrane potential was lowered below this 'threshold' value. On the other hand, the decrease in the membrane potential caused no effect on the phage infection under conditions promoting a concomitant increase in the value of the transmembranous pH gradient. The phage DNA transfer through the membrane of ATPase-deficient cells was reversibly inhibited by switching off the respiratory chain - the sole generator of a protonmotive force in these mutant cells. The membrane should be kept in the energized state during the phage DNA entrance into the cell. Adsorption of the phage on E. coli was followed by the reversible release of the respiratory control. Thus the results presented here indicate the requirement of the electrochemical proton gradient across the plasma membrane for injection of phage T4 DNA into E. coli. They support the concept postulating an expenditure of host cell metabolic energy for phage T4 DNA transfer through the membrane.  相似文献   

10.
Resting CD4+ T cells are a reservoir of latent HIV-1. Understanding the turnover of HIV DNA in these cells has implications for the development of eradication strategies. Most studies of viral latency focus on viral persistence under antiretroviral therapy (ART). We studied the turnover of SIV DNA resting CD4+ T cells during active infection in a cohort of 20 SIV-infected pigtail macaques. We compared SIV sequences at two Mane-A1*084:01-restricted CTL epitopes using serial plasma RNA and resting CD4+ T cell DNA samples by pyrosequencing, and used a mathematical modeling approach to estimate SIV DNA turnover. We found SIV DNA turnover in resting CD4+ T cells was slow in animals with low chronic viral loads, consistent with the long persistence of latency seen under ART. However, in animals with high levels of chronic viral replication, turnover was high. SIV DNA half-life within resting CD4 cells correleated with viral load (p = 0.0052) at the Gag KP9 CTL epitope. At a second CTL epitope in Tat (KVA10) there was a trend towards an association of SIV DNA half-life in resting CD4 cells and viral load (p = 0.0971). Further, we found that the turnover of resting CD4+ T cell SIV DNA was higher for escape during early infection than for escape later in infection (p = 0.0084). Our results suggest viral DNA within resting CD4 T cells is more labile and may be more susceptible to reactivation/eradication treatments when there are higher levels of virus replication and during early/acute infection.  相似文献   

11.
DNA synthesis during transition from the lysogenic state to the lytic cycle and throughout the latter has been studied in Haemophilus influenzae BC200 (HP1c1). Following exposure to ultraviolet light, there is a 30-min delay in DNA synthesis after which there is a rapidly increasing rate of phage DNA synthesis. The phage genome is replicated without extensive utilization of segments or of breakdown products of the bacterial chromosome. The mode of phage DNA replication was investigated by zonal sedimentation of labeled DNA in 5 to 20% neutral and alkaline sucrose gradients. Tritiated thymidine, incorporated during a 2-min pulse given at 38 min, chases rapidly into DNA, sedimenting like linear DNA of approximately 2 x 10(8) daltons, and then, at the expense of label in this peak, chases into slower-sedimenting phage DNA (2 x 10(7) daltons). The fast-sedimenting, rapidly labeled DNA satisfies certain criteria for being a concatenated replicative intermediate. Observations in the electron microscope revealed linear concatemers in the faster-sedimenting material and circular phage-sized DNA in the slower-sedimenting DNA. When induced cells are gently lysed with lysozyme and Brij 58 to maintain DNA-membrane associations and sedimented in neutral sucrose over a cesium chloride shelf, the concatemer is found with the cell-membrane-wall complex. Membrane-associated label chases to membrane-free material sedimenting like deproteinized HP1c1 DNA. When membrane-associated DNA from the cesium chloride shelf is deproteinized and resedimented in neutral sucrose, the sedimentation profile reveals that sedimentation rates of labeled DNA from this complex are indicative of sizes ranging from 2 x 10(8) daltons down to phage-sized pieces of 2 to 3 x 10(7) daltons. A model is presented which places HP1c1-DNA replication on the cell membrane where a concatemer of phage DNA is synthesized and subsequently degraded to phage-equivalent DNA. Phage-equivalent DNA is then either released from the membrane for packaging or is packaged while still membrane associated. Thus, the cell membrane is not only the site of DNA replication during which phage DNA is synthesized in multiple phage-equivalent concatemers but it is also the site at which these concatemers are selectively reduced to phage-sized pieces.  相似文献   

12.
Mycoplasma bacteriophage L51 single-stranded DNA and L2 double-stranded DNA are host cell modified and restricted when they transfect Acholeplasma laidlawii JA1 and K2 cells. The L51 genome has a single restriction endonuclease MboI site (recognition sequence GATC), which contains 5-methylcytosine when the DNA is isolated from L51 phage grown in K2 cells but is unmethylated when the DNA is from phage grown in JA1 cells. This GATC sequence is nonessential, since an L51 mutant in which the MboI site was deleted was still viable. DNA from this deletion mutant phage was not restricted during transfection of either strain K2 or JA1. Therefore, strain K2 restricts DNA containing the sequence GATC, and strain JA1 restricts DNA containing the sequence GAT 5-methylcytosine. We conclude that K2 cells have a restriction system specific for DNA containing the sequence GATC and protect their DNA by methylating cytosine in this sequence. In contrast, JA1 cells (which contain no methylated DNA bases) have a newly discovered type of restriction-modification system. From results of studies of the restriction of specifically methylated DNAs, we conclude that JA1 cells restrict DNA containing 5-methylcytosine, regardless of the nucleotide sequence containing 5-methylcytosine. This is the first report of a DNA restriction activity specific for a single (methylated) base. Modification in this system is the absence of cytosine methylating activity. A restriction-deficient variant of strain JA1, which retains the JA1 modification phenotype, was isolated, indicating that JA1 cells have a gene product with restriction specificity for DNA containing 5-methylcytosine.  相似文献   

13.
14.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

15.
16.
The influence of short-term energy intake and cycle exercise on oxygen consumption in response to a 1.5 MJ test meal was investigated in ten young, adult men. On the morning after a previous day's "low-energy" intake (LE regimen) of 4.5 MJ, the mean resting oxygen consumption increased by 0.7 ml X kg-1 X min-1 after the test meal (P less than 0.025). After a "high-energy" intake (HE regimen) of 18.1 MJ, the resting measurement was unchanged (+0.4 ml X kg-1 X min-1) after the meal (n.s.). These trends are the reverse of what would be expected if oxygen consumption in response to feeding is a factor in the acute control of body weight. The mean fasting oxygen consumption during cycle exercise at 56% of VO2max (constant work) for both LE and HE prior intakes was not different at 31.1 ml X kg-1 X min-1. Oxygen consumption during exercise increased after feeding by 0.5 ml X kg-1 X min-1 on the LE regimen (n.s.) and decreased by 1.2 ml X kg-1 X min-1 on the HE regimen (n.s.). These results are also the reverse of what would be expected if oxygen consumption in response to exercise is related to short-term energy intake.  相似文献   

17.
Bacillus subtilis tryC2, thyA, thyB, lysogenic for the phage DNA polymerase negative mutant SPO2 susL244, was induced under conditions preventing phage and bacterial DNA synthesis. The biological activity of DNA from induced cells and from uninduced controls was assayed by transformation and transfection, respectively. About 50% of the phage DNA biological activity in DNA extracted from induced cells was resistant to exposure to pH 11.8 TO 11.9. This DNA was operationally defined as alkali-resistant phage DNA. Transforming bacterial DNA from uninduced or induced cells and transfecting DNA from uninduced cells were more than 95% inactivated after exposure to high pH. The alkali-resistant phage DNA was characterized by sucrose gradient centrifugation, by centrifugation in cesium chloride-propidium iodide, and by electron microscopy. It was found to consist of a majority of covalently closed circular DNA molecules. Length measurements of a few relaxed circular molecules indicate a molecular weight of these similar to that previously found for mature SPO2DNA. Attempts to isolate similar covalently closed circular phage DNA from induced bacteria lysogenic for SPO2 phage with a functional DNA polymerase gene were unsuccessful. The gene order in mature and prophage SPO2 was determined by rescue of single and double markers from the respective type of DNA. The data obtained show that prophage DNA is (genetically) permuted relative to mature DNA. The phage attachment site is suggested to be located between genes I and J.  相似文献   

18.
The ability of stationary-phase cells of Escherichia coli W7 to incorporate radioactive precursors into macromolecular murein has been studied. During the initial 6 h of the stationary phase, resting cells incorporated meso-[3H]diaminopimelic acid at a rate corresponding to the insertion of 1.3 X 10(4) disaccharide units min-1 cell-1. Afterwards, the rate of incorporation dropped drastically (90%) to a low but still detectable level. Incorporation during stationary phase did not result in an increased amount of total murein in the culture, suggesting that it was related to a turnover process. Analysis of the effects of a number of beta-lactam antibiotics indicated that incorporation of murein precursors in stationary-phase cells was mediated by penicillin-binding proteins, suggesting that the activity of penicillin-binding protein 2 was particularly relevant to this process.  相似文献   

19.
Further biological and molecular characterization of actinophage VWB   总被引:2,自引:0,他引:2  
The development cycle of the temperate actinophage VWB was investigated. Adsorption of most phage particles occurred within 30 min and the adsorption constant was 0.6 x 10(-8) ml min-1. The latent and rise periods were 140 and 100 min, respectively, and the burst size was estimated to be 130-250 p.f.u. Although phage VWB could infect only Streptomyces venezuelae ETH 14630 (ATCC 40755), of six different S. venezuelae strains tested, phage DNA could be introduced by transfection into most non-infectible strains. Upon transfection, phage DNA was propagated in these non-infectible strains and phage particles were released. In addition, the transfected strains could be lysogenized. By comparison of restriction fragments of VWB DNA, either free or integrated in the chromosomal DNA of the S. venezuelae ETH 14630 lysogen, the attachment site was localized. PAGE of the phage proteins revealed at least 17 different proteins with three major bands estimated as 16.5, 27.2 and 43 kDa in size. The N-terminal amino acid sequence of these supposed major head and tail proteins was determined. The corresponding DNA sequences on the phage genome were localized using oligonucleotides synthesized on the basis of the N-terminal amino acid sequences. The genes coding for the major structural proteins were shown to be clustered, as has been observed for other bacteriophages.  相似文献   

20.
Bacteriophage phi105 is a temperate phage for the transformable Bacillus subtilis 168. The infectivity of deoxyribonucleic acid (DNA) extracted from mature phi105 phage particles, from bacteria lysogenic for phi105 (prophage DNA), and from induced lysogenic bacteria (vegetative DNA) was examined in the B. subtilis transformation system. About one infectious center was formed per 10(8) mature DNA molecules added to competent cells, but single markers could be rescued from mature DNA by a superinfecting phage at a 10(3)- to 10(4)-fold higher frequency. Single markers in mature DNA were inactivated at an exponential rate after uptake by a competent cell. Prophage and vegetative DNA gave about one infectious center per 10(3) molecules added to competent cells. Infectious prophage DNA entered competent cells as a single molecule; it gave a majority of lytic responses. Single markers in sheared prophage DNA were inactivated at the same rate as markers in mature DNA. Prophage DNA was dependent on the bacterial rec-1 function for its infectivity, whereas vegetative DNA was not. The mechanism of transfection of B. subtilis with viral DNA is discussed, and a model for transfection with phi105 DNA is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号