首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Targeted gene insertion methodology was used to study the effect of perturbing alpha-aminoadipic acid precursor flux on the overall production rate of beta-lactam biosynthesis in Streptomyces clavuligerus. A high-copy-number plasmid containing the lysine epsilon-aminotransferase gene (lat) was constructed and used to transform S. clavuligerus. The resulting recombinant strain (LHM100) contained an additional complete copy of lat located adjacent to the corresponding wild-type gene in the chromosome. Biological activity and production levels of beta-lactam antibiotics were two to five times greater than in wild-type S. clavuligerus. Although levels of lysine epsilon-aminotransferase were elevated fourfold in LHM100, the level of ACV synthetase, whose gene is located just downstream of lat, remained unchanged. These data strongly support the notion that direct perturbation of alpha-aminoadipic acid precursor flux resulted in increased antibiotic production. This strategy represents a successful application of metabolic engineering based on theoretical predictions of precursor flux in a secondary metabolic pathway.  相似文献   

2.
Genetic and biochemical evidence was obtained for lysine catabolism via cadaverine and delta-aminovalerate in both the beta-lactam producer Streptomyces clavuligerus and the nonproducer Streptomyces lividans. This pathway is used when lysine is supplied as the sole source of nitrogen for the organism. A second pathway for lysine catabolism is present in S. clavuligerus but not in S. lividans. It leads to alpha-aminoadipate, a precursor for beta-lactam biosynthesis. Since it does not allow S. clavuligerus to grow on lysine as the sole nitrogen source, this pathway may be used exclusively to provide a precursor for beta-lactam biosynthesis. beta-Lactam producers were unable to grow well on alpha-aminoadipate as the only nitrogen source, whereas three of seven species not known to produce beta-lactam grew well under the same conditions. Lysine epsilon-aminotransferase, the initial enzyme in the alpha-aminoadipate pathway for lysine catabolism, was detected in cell extracts only from the beta-lactam producers. These results suggest that synthesis of alpha-aminoadipate is exclusively a secondary metabolic trait, present or expressed only in beta-lactam producers, while genes governing the catabolism of alpha-aminoadipate are present or fully expressed only in beta-lactam nonproducers.  相似文献   

3.
Lysine epsilon-aminotransferase (LAT) in the beta-lactam-producing actinomycetes is considered to be the first step in the antibiotic biosynthetic pathway. Cloning of restriction fragments from Streptomyces clavuligerus, a beta-lactam producer, into Streptomyces lividans, a nonproducer that lacks LAT activity, led to the production of LAT in the host. DNA sequencing of restriction fragments containing the putative lat gene revealed a single open reading frame encoding a polypeptide with an approximately Mr 49,000. Expression of this coding sequence in Escherichia coli led to the production of LAT activity. Hence, LAT activity in S. clavuligerus is derived from a single polypeptide. A second open reading frame began immediately downstream from lat. Comparison of this partial sequence with the sequences of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D valine (ACV) synthetases from Penicillium chrysogenum and Cephalosporium acremonium and with nonribosomal peptide synthetases (gramicidin S and tyrocidine synthetases) found similarities among the open reading frames. Since mapping of the putative N and C termini of S. clavuligerus pcbAB suggests that the coding region occupies approximately 12 kbp and codes for a polypeptide related in size to the fungal ACV synthetases, the molecular characterization of the beta-lactam biosynthetic cluster between pcbC and cefE (approximately 25 kbp) is nearly complete.  相似文献   

4.
A gene (lat) encoding lysine 6-aminotransferase was found upstream of the pcbAB (encoding alpha-aminoadipylcysteinyl-valine synthetase) and pcbC (encoding isopenicillin N synthase) genes in the cluster of early cephamycin biosynthetic genes in Nocardia lactamdurans. The lat gene was separated by a small intergenic region of 64 bp from the 5' end of the pcbAB gene. The lat gene contained an open reading frame of 1,353 nucleotides (71.4% G + C) encoding a protein of 450 amino acids with a deduced molecular mass of 48,811 Da. Expression of DNA fragments carrying the lat gene in Streptomyces lividans led to a high lysine 6-aminotransferase activity which was absent from untransformed S. lividans. The enzyme was partially purified from S. lividans(pULBS8) and showed a molecular mass of 52,800 Da as calculated by Sephadex gel filtration and polyacrylamide gel electrophoresis. DNA sequences which hybridized strongly with the lat gene of N. lactamdurans were found in four cephamycin-producing Streptomyces species but not in four other actinomycetes which are not known to produce beta-lactams, suggesting that the gene is specific for beta-lactam biosynthesis and is not involved in general lysine catabolism. The protein encoded by the lat gene showed similarity to ornithine-5-aminotransferases and N-acetylornithine-5-aminotransferases and contained a pyridoxal phosphate-binding consensus amino acid sequence around Lys-300 of the protein. The evolutionary implications of the lat gene as a true beta-lactam biosynthetic gene are discussed.  相似文献   

5.
Streptomyces clavuligerus, Streptomyces lipmanii and Nocardia (formerly Streptomyces) lactamdurans are Gram-positive mycelial bacteria that produce medically important beta-lactam antibiotics (penicillins and cephalosporins including cephamycins) that are synthesized through a series of reactions starting from lysine, cysteine and valine. L-lysine epsilon-aminotransferase (LAT) is the initial enzyme in the two-step conversion of L-lysine to L-alpha-aminoadipic acid, a specific precursor of all penicillins and cephalosporins. Whereas S. clavuligerus uses LAT for cephalosporin production, it uses the cadaverine pathway for catabolism when lysine is the nitrogen source for growth. Although the cadaverine path is present in all examined streptomycetes, the LAT pathway appears to exist only in beta-lactam-producing strains. Genetically increasing the level of LAT enhances the production of cephamycin. LAT is the key rate-limiting enzyme in cephalosporin biosynthesis in S. clavuligerus strain NRRL 3585. This review will summarize information on this important enzyme.  相似文献   

6.
A cosmid clone containing closely linked beta-lactam antibiotic biosynthetic genes was isolated from a gene library of Flavobacterium sp. SC 12,154. The location within the cluster of the DNA thought to contain the gene for delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), the first step in the beta-lactam antibiotic biosynthetic pathway, was identified by a novel method. This DNA facilitated the isolation, by cross-hybridization, of the corresponding DNA from Streptomyces clavuligerus ATCC 27064, Penicillium chrysogenum Oli13 and Aspergillus nidulans R153. Evidence was obtained which confirmed that the cross-hybridizing sequences contained the ACVS gene. In each case the ACVS gene was found to be closely linked to other beta-lactam biosynthetic genes and constituted part of a gene cluster.  相似文献   

7.
8.
[4S-(4I,7I,10aJ)]1-Octahydro-5-oxo-4-[phenylmethoxy)carbonyl]amino]-7H-pyrido-[2,1-b] [1,3]thiazepine-7-carboxylic acid methyl ester (BMS-199541-01) is a key chiral intermediate for the synthesis of Omapatrilat (BMS-186716), a new vasopeptidease inhibitor under development. By using a selective enrichment culture technique we have isolated a strain of Sphingomonas paucimobilis SC 16113, which contains a novel L-lysine epsilon-aminotransferase. This enzyme catalyzed the oxidation of the epsilon-amino group of lysine in the dipeptide dimer N(2)-[N[phenyl-methoxy)-carbonyl] L-homocysteinyl] L-lysine)1,1-disulphide (BMS-201391-01) to produce BMS-199541-01. The aminotransferase reaction required alpha-ketoglutarate as the amino acceptor. Glutamate formed during this reaction was recycled back to alpha-ketoglutarate by glutamate oxidase from Streptomyces noursei SC 6007. Fermentation processes were developed for growth of S. paucimobilis SC 16113 and S. noursei SC 6007 for the production of L-lysine epsilon-amino transferase and glutamate oxidase, respectively. L-lysine epsilon-aminotransferase was purified to homogeneity and N-terminal and internal peptides sequences of the purified protein were determined. The mol wt of L-lysine epsilon-aminotransferase is 81 000 Da and subunit size is 40 000 Da. L-lysine epsilon-aminotransferase gene (lat gene) from S. paucimobilis SC 16113 was cloned and overexpressed in Escherichia coli. Glutamate oxidase was purified to homogeneity from S. noursei SC 6003. The mol wt of glutamate oxidase is 125 000 Da and subunit size is 60 000 Da. The glutamate oxiadase gene from S. noursei SC 6003 was cloned and expressed in Streptomyces lividans. The biotransformation process was developed for the conversion of BMS-201391-01 to BMS-199541-01 by using L-lysine epsilon-aminotransferase expressed in E. coli. In the biotransformation process, for conversion of BMS-201391-01 (CBZ protecting group) to BMS-199541-01, a reaction yield of 65-70 M% was obtained depending upon reaction conditions used in the process. Phenylacetyl or phenoxyacetyl protected analogues of BMS-201391-01 also served as substrates for L-lysine epsilon-aminotransferase giving reaction yields of 70 M% for the corresponding BMS-199541-01 analogs. Two other dipeptides N-[N[(phenylmethoxy)carbonyl]-L-methionyl]-L-lysine (BMS-203528) and N,2-[S-acetyl-N-[(phenylmethoxy)carbonyl]-L-homocysteinyl]-L-lysine (BMS-204556) were also substrates for L-lysine epsilon-aminotransferase. N-alpha-protected (CBZ or BOC)-L-lysine were also oxidized by L-lysine epsilon-aminotransferase.  相似文献   

9.
To investigate the temporal and spatial expression patterns of the gene (lat ) encoding lysine epsilon-aminotransferase (LAT) for cephamycin C biosynthesis, a mutant form of green fluorescent protein (mut1GFP) was integrated into the Streptomyces clavuligerus chromosome (strain LH369), resulting in a translational fusion with lat. LAT activity and fluorescence profiles of the recombinant protein paralleled the native LAT enzyme activity profile in wild-type S. clavuligerus, which peaked during exponential growth phase and decreased slowly towards stationary phase. These results indicate that the LAT-Mut1GFP fusion protein retains both LAT and GFP functionality in S. clavuligerus LH369. LH369 produced wild-type levels of cephamycin C in minimal medium culture conditions supplemented with lysine. Time-lapsed confocal microscopy of the S. clavuligerus LH369 strain revealed the temporal and spatial characteristics of lat gene expression and demonstrated that physiological development of S. clavuligerus colonies leading to cephamycin C biosynthesis is limited to the substrate mycelia.  相似文献   

10.
The structural genes for the entire bacitracin synthetase 2 (component II) and for a part of the putative bacitracin synthetase 3 (component III) from Bacillus licheniformis ATCC 10716 were cloned and expressed in Escherichia coli. A cosmid library of B. licheniformis DNA was constructed. The library was screened for the ability to produce bacitracin synthetase by in situ immunoassay using anti-bacitracin synthetase antiserum. A positive clone designated B-15, which has a recombinant plasmid carrying about a 32-kilobase insert of B. licheniformis DNA, was further characterized. Analysis of crude cell extract from B-15 by polyacrylamide gel electrophoresis and Western blotting (immunoblotting) showed that the extract contains two immunoreactant proteins with high molecular weight. One band with a molecular weight of about 240,000 comigrates with bacitracin synthetase 2; the other band is a protein with a molecular weight of about 300,000. Partial purification of the gene products encoded by the recombinant plasmid by gel filtration and hydroxyapatite column chromatography revealed that one gene product catalyzes L-lysine- and L-ornithine-dependent ATP-PPi exchange reactions which are characteristic of bacitracin synthetase 2, and the other product catalyzes L-isoleucine-, L-leucine, L-valine-, and L-histidine-dependent ATP-PPi exchange activities, suggesting the activities of a part of bacitracin synthetase 3. Subcloning experiments indicated that the structural gene for bacitracin synthetase 2 is located near the middle of the insert.  相似文献   

11.
Genomic clones containing an Aspergillus nidulans isopenicillin N synthetase (IPNS) gene have been identified by heterologous hybridization with a Cephalosporium acremonium DNA probe. The open reading frame encodes a 331 amino acid polypeptide with extensive homology with the genes of other beta-lactam-producing fungi. The gene product has been overexpressed in Escherichia coli and shown to have activity of IPNS. This represents the first evidence at the molecular level that the biosynthesis of penicillins in A. nidulans occurs by the same pathway as in other beta-lactam-producing microorganisms. Comparison of available nucleotide sequences from IPNS genes suggests a horizontal transmission of the gene between the prokaryotic beta-lactam producers of the genus Streptomyces and the filamentous fungi.  相似文献   

12.
The cephabacins, one of the beta-lactam antibiotics, are produced by Lysobacter lactamgenus. The previous studies the cephabacin biosynthesis were limited to a gene cluster that encodes the gene products responsible for the biosynthesis of the cephem nucleus. The long-term goal of this research is to elucidate the metabolic diversity and biosynthetic pathway of cephabacins and to design and/or discover new pharmacologically active compounds by engineering the cephabacin biosynthetic pathway in L. lactamgenus. In this study, we have cloned and sequenced a 24-kb fragment of a DNA locus upstream of the previously reported but incomplete putative ORF9 of L. lactamgenus. This contains three putative ORFs (the complete ORF9, ORF10, and ORF11) transcribed in the same direction and one putative ORF (ORF12) in the opposite direction. The isolated DNA locus extends the previously cloned part of the DNA locus containing the genes responsible for biosynthesis of the cephem nucleus up to 45 kb. The 42-kb fragment of the 45-kb gene cluster is located between a potential TATA box just upstream of the ORF11 and a termination loop just downstream of the previously reported bla gene. The complete ORF9 contains three nonribosomal peptide synthetase (NRPS) modules and one polyketide synthase (PKS) module and the ORF11 contains one NRPS module. The complete ORF9 also contains a putative thioesterase domain at the C-terminal end. We predicted the amino acid specificity of the four NRPSs by generating specificity binding pockets and expressed one of the NRPSs to confirm the amino acid specificity. The adenylation domain of the NRPS1, which is the last module of the NRPSs, showed significant amino acid specificity for L-arginine. These findings are in perfect agreement with the composition that was expected for the structure of cephabacins which contain an acetate residue, an L-arginine, and one to three L-alanines at the C-3' position of the cephem nucleus of cephabacins. The ORF10, encoding a putative ABC transporter which might be involved in conferring resistance against cephabacins, was identified between the complete ORF9 and the ORF11. Therefore, the complete ORF9, ORF10, ORF11 reported here and the other genes previously reported constitute an operon for the biosynthesis of cephabacins in L. lactamgenus. Based on our results, the biosynthetic pathways of acetate and elongated peptide moieties and a mechanism by which cephabacins are assembled by connecting the peptide moiety synthesized by the gene products of the complete ORF9 and the ORF11 to the C-3' position of the cephem nucleus synthesized by the gene products of pcbAB, pcbC, cefE, cefF, and cefD have been elucidated.  相似文献   

13.
A hybrid ColE1 plasmid from the Clarke-Carbon colony bank with a 7-kilobase insertion was found to encode the inducible lysyl-tRNA synthetase along with the catabolic enzyme lysine decarboxylase. The gene for the inducible synthetase, lysU, must lie within 0.3 min of the lysine decarboxylase gene, cadA, at 92 min on the Escherichia coli genetic map.  相似文献   

14.
Cephamycin C production was blocked in wild-type cultures of the clavulanic acid-producing organism Streptomyces clavuligerus by targeted disruption of the gene (lat) encoding lysine epsilon-aminotransferase. Specific production of clavulanic acid increased in the lat mutants derived from the wild-type strain by 2- to 2.5-fold. Similar beneficial effects on clavulanic acid production were noted in previous studies when gene disruption was used to block the production of the non-clavulanic acid clavams produced by S. clavuligerus. Therefore, mutations in lat and in cvm1, a gene involved in clavam production, were introduced into a high-titer industrial strain of S. clavuligerus to create a double mutant with defects in production of both cephamycin C and clavams. Production of both cephamycin C and non-clavulanic acid clavams was eliminated in the double mutant, and clavulanic acid titers increased about 10% relative to those of the parental strain. This represents the first report of the successful use of genetic engineering to eliminate undesirable metabolic pathways in an industrial strain used for the production of an antibiotic important in human medicine.  相似文献   

15.
Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Due to its chemical structure, (D-O-Leu-D-Ala-L-O-Val-L-Val)(3), cereulide might be synthesized nonribosomally. Therefore, degenerate PCR primers targeted to conserved sequence motifs of known nonribosomal peptide synthetase (NRPS) genes were used to amplify gene fragments from a cereulide-producing B. cereus strain. Sequence analysis of one of the amplicons revealed a DNA fragment whose putative gene product showed significant homology to valine activation NRPS modules. The sequences of the flanking regions of this DNA fragment revealed a complete module that is predicted to activate valine, as well as a putative carboxyl-terminal thioesterase domain of the NRPS gene. Disruption of the peptide synthetase gene by insertion of a kanamycin cassette through homologous recombination produced cereulide-deficient mutants. The valine-activating module was highly conserved when sequences from nine emetic B. cereus strains isolated from diverse geographical locations were compared. Primers were designed based on the NRPS sequence, and the resulting PCR assay, targeting the ces gene, was tested by using a panel of 143 B. cereus group strains and 40 strains of other bacterial species showing PCR bands specific for only the cereulide-producing B. cereus strains.  相似文献   

16.
alpha-Aminoadipate reductase (alpha-AAR) is a key enzyme in the branched pathway for lysine and beta-lactam biosynthesis of filamentous fungi since it competes with alpha-aminoadipyl-cysteinyl-valine synthetase for their common substrate L-alpha-aminoadipic acid. The alpha-AAR activity in two penicillin-producing Penicillium chrysogenum strains and two cephalosporin-producing Acremonium chrysogenum strains has been studied. The alpha-AAR activity peaked during the growth-phase preceding the onset of antibiotic production, which coincides with a decrease in alpha-AAR activity, and was lower in high penicillin- or cephalosporin-producing strains. The alpha-AAR required NADPH for enzyme activity and could not use NADH as electron donor for reduction of the alpha-aminoadipate substrate. The alpha-AAR protein of P. chrysogenum was detected by Western blotting using anti-alpha-AAR antibodies. The mechanism of lysine feedback regulation in these two filamentous fungi involves inhibition of the alpha-AAR activity but not repression of its synthesis by lysine. This is different from the situation in yeasts where lysine feedback inhibits and represses alpha-AAR. Nitrate has a strong negative effect on alpha-AAR formation as shown by immunoblotting studies of alpha-AAR. The nitrate effect was reversed by lysine.  相似文献   

17.
Lee Y  Lee CS  Kim YJ  Chun S  Park S  Kim YS  Han BD 《Molecules and cells》2002,14(2):192-197
A robust and fast DNA chip method was developed in order to detect the various beta-lactam antibiotic-resistance genes in one slide. These genes included PSE, OXA, FOX, MEN, CMY, TEM, SHV, OXY, and AmpC. beta-lactam antibiotic-resistance genes were labeled with a fluorescent nucleotide by a multiplex polymerase chain reaction using a mixture of specific primer sets for each gene. This labeled target was hybridized with a DNA chip that contained the spots of the specific probe DNAs for each beta-lactam antibiotic-resistance gene. This technique made it possible to detect the specific resistance gene, even in a single bacterium.  相似文献   

18.
Defined strains of the genus Penicillium used as starter cultures for food and strains isolated from mold-fermented foods were analyzed for their ability to inhibit the growth of Micrococcus luteus DSM 348 used as an indicator organism. Most of the strains belonging to the species Penicillium nalgiovense showed antagonistic activity in agar diffusion assays. Penicillium camemberti and Penicillium roqueforti strains proved to be inactive in these tests. The inhibitory substance excreted by P. nalgiovense strains was totally inactivated when treated with beta-lactamase (penicillinase), indicating that a beta-lactam antibiotic is produced by these strains. This observation was verified by PCRs with primer sets specific to the [delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine] synthetase gene (pcbAB), the isopenicillin-N-synthase gene (pcbC), and the acyl coenzyme A:6-aminopenicillanic acid acyltransferase gene (penDE) from Penicillium chrysogenum using chromosomal DNA of the fungal strains as a template. These results indicate that penicillin biosynthesis is a characteristic often found in strains of P. nalgiovense. No specific PCR signal could be identified with DNA from P. camemberti and P. roqueforti.  相似文献   

19.
Gerratana B  Stapon A  Townsend CA 《Biochemistry》2003,42(25):7836-7847
The Erwinia carotorova carA, carB, and carC gene products are essential for the biosynthesis of (5R)-carbapen-2-em-3-carboxylic acid, the simplest carbapenem beta-lactam antibiotic. CarA (hereafter named carbapenam synthetase) has been proposed to catalyze formation of (3S,5S)-carbapenam-3-carboxylic acid from (2S,5S)-5-carboxymethyl proline based on characterization of the products of fermentation experiments in Escherichia coli cells transformed with pET24a/carB and pET24a/carAB, and on sequence homology to beta-lactam synthetase, an enzyme that catalyzes formation of a monocyclic beta-lactam ring with concomitant ATP hydrolysis. In this study, we have purified recombinant carbapenam synthetase and shown in vitro that it catalyzes the ATP-dependent formation of (3S,5S)-carbapenam-3-carboxylic acid from (2S,5S)-5-carboxymethyl proline. The kinetic mechanism is Bi-Ter where ATP is the first substrate to bind followed by (2S,5S)-5-carboxymethyl proline and PPi is the last product released based on initial velocity, product and dead-end inhibition studies. The reactions catalyzed by carbapenam synthetase with different diastereomers of the natural substrate and with alternate alpha-amino diacid substrates were studied by HPLC, ESI mass spectrometry, and steady-state kinetic analysis. On the basis of these results, we have proposed a role for each moiety of (2S,5S)-5-carboxymethyl proline for binding to the active site of carbapenam synthetase. Coupled enzyme assays of AMP and pyrophosphate release in the reactions catalyzed by carbapenam synthetase with adipic and glutaric acid, which lack the alpha-amino group, in the presence and absence of hydroxylamine support the formation of an acyladenylate intermediate in the catalytic cycle.  相似文献   

20.
Some bacterial genomes were found to contain genes encoding putative proteins with considerable sequence homology to cyanophycin synthetase CphA of cyanobacteria. Such a gene from the Gram-positive, spore-forming anaerobe Desulfitobacterium hafniense was cloned. Expression in Escherichia coli resulted in the formation of a polydispers copolymer of aspartic acid and arginine, with a minor amount of lysine, of about 30 kDa molecular mass. In contrast to cyanophycin, this polymer was water-soluble. The structure of the polymer formed by the synthetase from Desulfitobacterium hafniense was studied by enzymatic degradation with the cyanophycin-specific hydrolase cyanophycinase, and by chemical and mass-spectroscopic analyses. Despite of the differences in solubility, indicating that both polymers cannot be completely identical, the chemical structure was found to be very similar to that of cyanophycin. The results suggest that the use of cyanophycin-like polymers as a nitrogen-rich reserve material is not restricted to cyanobacteria, and that such polymers may not necessarily be stored in granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号