首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epistasis, or gene–gene interaction, results from joint effects of genes on a trait; thus, the same alleles of one gene may display different genetic effects in different genetic backgrounds. In this study, we generalized the coding technique of a natural and orthogonal interaction (NOIA) model for association studies along with gene–gene interactions for dichotomous traits and human complex diseases. The NOIA model which has non-correlated estimators for genetic effects is important for estimating influence from multiple loci. We conducted simulations and data analyses to evaluate the performance of the NOIA model. Both simulation and real data analyses revealed that the NOIA statistical model had higher power for detecting main genetic effects and usually had higher power for some interaction effects than the usual model. Although associated genes have been identified for predisposing people to melanoma risk: HERC2 at 15q13.1, MC1R at 16q24.3 and CDKN2A at 9p21.3, no gene–gene interaction study has been fully explored for melanoma. By applying the NOIA statistical model to a genome-wide melanoma dataset, we confirmed the previously identified significantly associated genes and found potential regions at chromosomes 5 and 4 that may interact with the HERC2 and MC1R genes, respectively. Our study not only generalized the orthogonal NOIA model but also provided useful insights for understanding the influence of interactions on melanoma risk.  相似文献   

2.
How to perform meaningful estimates of genetic effects   总被引:2,自引:0,他引:2  
Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map.  相似文献   

3.
Alvarez-Castro JM  Carlborg O 《Genetics》2007,176(2):1151-1167
Interaction between genes, or epistasis, is found to be common and it is a key concept for understanding adaptation and evolution of natural populations, response to selection in breeding programs, and determination of complex disease. Currently, two independent classes of models are used to study epistasis. Statistical models focus on maintaining desired statistical properties for detection and estimation of genetic effects and for the decomposition of genetic variance using average effects of allele substitutions in populations as parameters. Functional models focus on the evolutionary consequences of the attributes of the genotype-phenotype map using natural effects of allele substitutions as parameters. Here we provide a new, general and unified model framework: the natural and orthogonal interactions (NOIA) model. NOIA implements tools for transforming genetic effects measured in one population to the ones of other populations (e.g., between two experimental designs for QTL) and parameters of statistical and functional epistasis into each other (thus enabling us to obtain functional estimates of QTL), as demonstrated numerically. We develop graphical interpretations of functional and statistical models as regressions of the genotypic values on the gene content, which illustrates the difference between the models--the constraint on the slope of the functional regression--and when the models are equivalent. Furthermore, we use our theoretical foundations to conceptually clarify functional and statistical epistasis, discuss the advantages of NOIA over previous theory, and stress the importance of linking functional and statistical models.  相似文献   

4.
Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting is related to several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we generalize the natural and orthogonal interactions (NOIA) framework to allow for estimation of both main allelic effects and POEs. We develop a statistical (Stat-POE) model that has the orthogonal estimates of parameters including the POEs. We conducted simulation studies for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.  相似文献   

5.
Variance components models for gene-environment interaction in twin analysis.   总被引:10,自引:0,他引:10  
Gene-environment interaction is likely to be a common and important source of variation for complex behavioral traits. Often conceptualized as the genetic control of sensitivity to the environment, it can be incorporated in variance components twin analyses by partitioning genetic effects into a mean part, which is independent of the environment, and a part that is a linear function of the environment. The model allows for one or more environmental moderator variables (that possibly interact with each other) that may i). be continuous or binary ii). differ between twins within a pair iii). interact with residual environmental as well as genetic effects iv) have nonlinear moderating properties v). show scalar (different magnitudes) or qualitative (different genes) interactions vi). be correlated with genetic effects acting upon the trait, to allow for a test of gene-environment interaction in the presence of gene-environment correlation. Aspects and applications of a class of models are explored by simulation, in the context of both individual differences twin analysis and, in a companion paper (Purcell & Sham, 2002) sibpair quantitative trait locus linkage analysis. As well as elucidating environmental pathways, consideration of gene-environment interaction in quantitative and molecular studies will potentially direct and enhance gene-mapping efforts.  相似文献   

6.
Álvarez-Castro JM  Yang RC 《Genetica》2011,139(9):1119-1134
Quantitative genetics stems from the theoretical models of genetic effects, which are re-parameterizations of the genotypic values into parameters of biological (genetic) relevance. Different formulations of genetic effects are adequate to address different subjects. We thus need to generalize and unify them under a common framework for enabling researchers to easily transform genetic effects between different biological meanings. The Natural and Orthogonal Interactions (NOIA) model of genetic effects has been developed to achieve this aim. Here, we further implement the statistical formulation of NOIA with multiple alleles under Hardy–Weinberg departures (HWD). We show that our developments are straightforwardly connected to the decomposition of the genetic variance and we point out several emergent properties of multiallelic quantitative genetic models, as compared to the biallelic ones. Further, NOIA entails a natural extension of one-locus developments to multiple epistatic loci under linkage equilibrium. Therefore, we present an extension of the orthogonal decomposition of the genetic variance to multiple epistatic, multiallelic loci under HWD. We illustrate this theory with a graphical interpretation and an analysis of published data on the human acid phosphatase (ACP1) polymorphism.  相似文献   

7.
Simulated data were used to determine the properties of multivariate prediction of breeding values for categorical and continuous traits using phenotypic, molecular genetic and pedigree information by mixed linear-threshold animal models via Gibbs sampling. Simulation parameters were chosen such that the data resembled situations encountered in Warmblood horse populations. Genetic evaluation was performed in the context of the radiographic findings in the equine limbs. The simulated pedigree comprised seven generations and 40 000 animals per generation. The simulated data included additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits. For one of the binary traits, quantitative trait locus (QTL) effects and genetic markers were simulated, with three different scenarios with respect to recombination rate (r) between genetic markers and QTL and polymorphism information content (PIC) of genetic markers being studied: r = 0.00 and PIC = 0.90 (r0p9), r = 0.01 and PIC = 0.90 (r1p9), and r = 0.00 and PIC = 0.70 (r0p7). For each scenario, 10 replicates were sampled from the simulated horse population, and six different data sets were generated per replicate. Data sets differed in number and distribution of animals with trait records and the availability of genetic marker information. Breeding values were predicted via Gibbs sampling using a Bayesian mixed linear-threshold animal model with residual covariances fixed to zero and a proper prior for the genetic covariance matrix. Relative breeding values were used to investigate expected response to multi- and single-trait selection. In the sires with 10 or more offspring with trait information, correlations between true and predicted breeding values ranged between 0.89 and 0.94 for the continuous traits and between 0.39 and 0.77 for the binary traits. Proportions of successful identification of sires of average, favourable and unfavourable genetic value were 81% to 86% for the continuous trait and 57% to 74% for the binary traits in these sires. Expected decrease of prevalence of the QTL trait was 3% to 12% after multi-trait selection for all binary traits and 9% to 17% after single-trait selection for the QTL trait. The combined use of phenotype and genotype data was superior to the use of phenotype data alone. It was concluded that information on phenotypes and highly informative genetic markers should be used for prediction of breeding values in mixed linear-threshold animal models via Gibbs sampling to achieve maximum reduction in prevalences of binary traits.  相似文献   

8.
9.
Covariate models have previously been developed as an extension to affected-sib-pair methods in which the covariate effects are jointly estimated with the degree of excess allele sharing. These models can estimate the differences in sib-pair allele sharing that are associated with measurable environment or genes. When there are no covariates, the pattern of identical-by-descent allele sharing in affected sib pairs is expected to fall within a small triangular region of the potential parameter space, under most genetic models. By restriction of the estimated allele sharing to this triangle, improved power is obtained in tests for genetic linkage. When the affected-sib-pair model is generalized to allow for covariates that affect allele sharing, however, new constraints and new methods for the application of constraints are required. Three generalized constraint methods are proposed and evaluated by use of simulated data. The results compare the power of the different methods, with and without covariates, for a single-gene model with age-dependent onset and for quantitative and qualitative gene-environment and gene-gene interaction models. Covariates can improve the power to detect linkage and can be particularly valuable when there are qualitative gene-environment interactions. In most situations, the best strategy is to assume that there is no dominance variance and to obtain constrained estimates for covariate models under this assumption.  相似文献   

10.
In modern genetic epidemiology studies, the association between the disease and a genomic region, such as a candidate gene, is often investigated using multiple SNPs. We propose a multilocus test of genetic association that can account for genetic effects that might be modified by variants in other genes or by environmental factors. We consider use of the venerable and parsimonious Tukey's 1-degree-of-freedom model of interaction, which is natural when individual SNPs within a gene are associated with disease through a common biological mechanism; in contrast, many standard regression models are designed as if each SNP has unique functional significance. On the basis of Tukey's model, we propose a novel but computationally simple generalized test of association that can simultaneously capture both the main effects of the variants within a genomic region and their interactions with the variants in another region or with an environmental exposure. We compared performance of our method with that of two standard tests of association, one ignoring gene-gene/gene-environment interactions and the other based on a saturated model of interactions. We demonstrate major power advantages of our method both in analysis of data from a case-control study of the association between colorectal adenoma and DNA variants in the NAT2 genomic region, which are well known to be related to a common biological phenotype, and under different models of gene-gene interactions with use of simulated data.  相似文献   

11.
N Yi  S Xu 《Genetics》1999,153(2):1029-1040
Mapping quantitative trait loci (QTL) for complex binary traits is more challenging than for normally distributed traits due to the nonlinear relationship between the observed phenotype and unobservable genetic effects, especially when the mapping population contains multiple outbred families. Because the number of alleles of a QTL depends on the number of founders in an outbred population, it is more appropriate to treat the effect of each allele as a random variable so that a single variance rather than individual allelic effects is estimated and tested. Such a method is called the random model approach. In this study, we develop the random model approach of QTL mapping for binary traits in outbred populations. An EM-algorithm with a Fisher-scoring algorithm embedded in each E-step is adopted here to estimate the genetic variances. A simple Monte Carlo integration technique is used here to calculate the likelihood-ratio test statistic. For the first time we show that QTL of complex binary traits in an outbred population can be scanned along a chromosome for their positions, estimated for their explained variances, and tested for their statistical significance. Application of the method is illustrated using a set of simulated data.  相似文献   

12.
ABSTRACT: BACKGROUND: Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. RESULTS: In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. CONCLUSION: Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.  相似文献   

13.
Complex diseases, by definition, involve multiple factors, including gene-gene interactions and gene-environment interactions. Researchers commonly rely on simulated data to evaluate their approaches for detecting high-order interactions in disease gene mapping. A publicly available simulation program to generate samples involving complex genetic and environmental interactions is of great interest to the community. We have developed a software package named gs1.0, which has been widely used since its publication. In this article, we present an upgraded version gs2.0, which not only inherits its capacity to generate realistic genotype data but also provides great functionality and flexibility to simulate various interaction models. In addition to a standalone version, a user-friendly web server (http://cbc.case.edu/gs) has been set up to help users to build complex interaction models. Furthermore, by utilizing three three-locus models as an example, we have shown how realistic model parameters can be chosen in generating simulated data.  相似文献   

14.
Complex disease by definition results from the interplay of genetic and environmental factors. However, it is currently unclear how gene-environment interaction can best be used to locate complex disease susceptibility loci, particularly in the context of studies where between 1,000 and 1,000,000 markers are scanned for association with disease. We present a joint test of marginal association and gene-environment interaction for case-control data. We compare the power and sample size requirements of this joint test to other analyses: the marginal test of genetic association, the standard test for gene-environment interaction based on logistic regression, and the case-only test for interaction that exploits gene-environment independence. Although for many penetrance models the joint test of genetic marginal effect and interaction is not the most powerful, it is nearly optimal across all penetrance models we considered. In particular, it generally has better power than the marginal test when the genetic effect is restricted to exposed subjects and much better power than the tests of gene-environment interaction when the genetic effect is not restricted to a particular exposure level. This makes the joint test an attractive tool for large-scale association scans where the true gene-environment interaction model is unknown.  相似文献   

15.
Sexual polymorphisms are model systems for analyzing the evolution of reproductive strategies. However, their plasticity and other binary traits have rarely been studied, with respect to environmental variables. A possible reason is that, although threshold models offer an adequate quantitative genetics framework for binary traits in a single environment, analyzing their plasticity requires more refined empirical and theoretical approaches. The statistical framework proposed here, based on the environmental threshold model (ETM), should partially fill this gap. This methodology is applied to an empirical dataset on a plastic sexual polymorphism, aphally, in the snail Bulinus truncatus. Aphally is characterized by the co-occurrence of regular hermaphrodites (euphallics) together with hermaphrodites deprived of the male copulatory organ (aphallics). Reaction norms were determined for 40 inbred lines, distributed at three temperatures, in a first experiment. A second experiment allowed us to rule out maternal effects. We confirmed the existence of high broad-sense heritabilities as well as a positive effect of high temperatures on aphally. However a significant genotype-by-environment interaction was detected for the first time, suggesting that sexual plasticity itself can respond to selection. A nested series of four ETM-like models was developed for estimating genetical effects on both mean aphally rate and plasticity. These models were tested using a maximum-likelihood procedure and fitted to aphally data. Although no perfect fit of models to data was observed, the refined versions of ETM models conveniently reduce the analysis of complex reaction norms of binary traits into standard quantitative genetics parameters, such as genetic values and environmental variances.  相似文献   

16.
17.
Xu C  Li Z  Xu S 《Genetics》2005,169(2):1045-1059
Joint mapping for multiple quantitative traits has shed new light on genetic mapping by pinpointing pleiotropic effects and close linkage. Joint mapping also can improve statistical power of QTL detection. However, such a joint mapping procedure has not been available for discrete traits. Most disease resistance traits are measured as one or more discrete characters. These discrete characters are often correlated. Joint mapping for multiple binary disease traits may provide an opportunity to explore pleiotropic effects and increase the statistical power of detecting disease loci. We develop a maximum-likelihood method for mapping multiple binary traits. We postulate a set of multivariate normal disease liabilities, each contributing to the phenotypic variance of one disease trait. The underlying liabilities are linked to the binary phenotypes through some underlying thresholds. The new method actually maps loci for the variation of multivariate normal liabilities. As a result, we are able to take advantage of existing methods of joint mapping for quantitative traits. We treat the multivariate liabilities as missing values so that an expectation-maximization (EM) algorithm can be applied here. We also extend the method to joint mapping for both discrete and continuous traits. Efficiency of the method is demonstrated using simulated data. We also apply the new method to a set of real data and detect several loci responsible for blast resistance in rice.  相似文献   

18.
Strategies for genetic mapping of categorical traits   总被引:3,自引:0,他引:3  
Shaoqi Rao  Xia Li 《Genetica》2000,109(3):183-197
The search for efficient and powerful statistical methods and optimal mapping strategies for categorical traits under various experimental designs continues to be one of the main tasks in genetic mapping studies. Methodologies for genetic mapping of categorical traits can generally be classified into two groups, linear and non-linear models. We develop a method based on a threshold model, termed mixture threshold model to handle ordinal (or binary) data from multiple families. Monte Carlo simulations are done to compare its statistical efficiencies and properties of the proposed non-linear model with a linear model for genetic mapping of categorical traits using multiple families. The mixture threshold model has notably higher statistical power than linear models. There may be an optimal sampling strategy (family size vs number of families) in which genetic mapping reaches its maximal power and minimal estimation errors. A single large-sibship family does not necessarily produce the maximal power for detection of quantitative trait loci (QTL) due to genetic sampling of QTL alleles. The QTL allelic model has a marked impact on efficiency of genetic mapping of categorical traits in terms of statistical power and QTL parameter estimation. Compared with a fixed number of QTL alleles (two or four), the model with an infinite number of QTL alleles and normally distributed allelic effects results in loss of statistical power. The results imply that inbred designs (e.g. F2 or four-way crosses) with a few QTL alleles segregating or reducing number of QTL alleles (e.g. by selection) in outbred populations are desirable in genetic mapping of categorical traits using data from multiple families. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
GenABEL: an R library for genome-wide association analysis   总被引:9,自引:0,他引:9  
Here we describe an R library for genome-wide association (GWA) analysis. It implements effective storage and handling of GWA data, fast procedures for genetic data quality control, testing of association of single nucleotide polymorphisms with binary or quantitative traits, visualization of results and also provides easy interfaces to standard statistical and graphical procedures implemented in base R and special R libraries for genetic analysis. We evaluated GenABEL using one simulated and two real data sets. We conclude that GenABEL enables the analysis of GWA data on desktop computers. Availability: http://cran.r-project.org.  相似文献   

20.
An interval quantitative trait locus (QTL) mapping method for complex polygenic diseases (as binary traits) showing QTL by environment interactions (QEI) was developed for outbred populations on a within-family basis. The main objectives, within the above context, were to investigate selection of genetic models and to compare liability or generalized interval mapping (GIM) and linear regression interval mapping (RIM) methods. Two different genetic models were used: one with main QTL and QEI effects (QEI model) and the other with only a main QTL effect (QTL model). Over 30 types of binary disease data as well as six types of continuous data were simulated and analysed by RIM and GIM. Using table values for significance testing, results show that RIM had an increased false detection rate (FDR) for testing interactions which was attributable to scale effects on the binary scale. GIM did not suffer from a high FDR for testing interactions. The use of empirical thresholds, which effectively means higher thresholds for RIM for testing interactions, could repair this increased FDR for RIM, but such empirical thresholds would have to be derived for each case because the amount of FDR depends on the incidence on the binary scale. RIM still suffered from higher biases (15-100% over- or under-estimation of true values) and high standard errors in QTL variance and location estimates than GIM for QEI models. Hence GIM is recommended for disease QTL mapping with QEI. In the presence of QEI, the model including QEI has more power (20-80% increase) to detect the QTL when the average QTL effect is small (in a situation where the model with a main QTL only is not too powerful). Top-down model selection is proposed in which a full test for QEI is conducted first and then the model is subsequently simplified. Methods and results will be applicable to human, plant and animal QTL mapping experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号