首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chinese hamster cell line K12 is temperature-sensitive for the initiation of DNA synthesis. K12 cells synchronized by serum deprivation were collected in early G1(G0). Heterokaryons were formed by fusing chick erythrocytes with serum-starved K12 cells through the use of UV-irradiated Sendai virus. At the permissive temperature (36.5 degrees C), erythrocyte nuclei in heterokaryons enlarged, the chromatin dispersed, and erythrocyte nuclei synthesized DNA at about the same time as the K12 nuclei. At the restrictive temperature (41 degrees C), erythrocyte nuclei enlarged, but neither erythrocyte nor K12 nuclei initiated DNA synthesis. When erythrocyte nuclei were fused with Wg-1A cells, the wild-type parent for ts K12 cells, both kinds of nuclei synthesized DNA at 36.5 degrees C and 41 degrees C. Activation of erythrocyte nuclei was inefficient in heterokaryons incubated in low-serum medium. The results indicate that serum factors and a cellular function defined by the K12 mutation are required for activation of chick erythrocyte nuclear DNA synthesis.  相似文献   

3.
Beverly Wolf 《Genetics》1972,72(4):569-593
A temperature sensitive strain of E. coli K12 has been isolated in which residual DNA synthesis occurs at the 40 degrees C restrictive temperature; syntheses of RNA, protein and DNA precursors are not directly affected. The mutation has been designated dna-325 and is located at 89 min on the E. coli map in the same region where the dnaC locus is found. dnaC mutants are considered to be defective in DNA initiation. Some of the data are consistent with the view that the dna-325 mutation is temperature sensitive in the process of DNA initiation rather than DNA chain elongation: (1) more than two cell divisions occur after a shift to 40 degrees C; (2) upon a shift down to 30 degrees C, cell division occurs again only after the DNA content of the cells has doubled; (3) 80% more DNA is made at 30 degrees C in the presence of chloramphenicol after prior inhibition of DNA synthesis at 40 degrees C. These three observations indicate that rounds of DNA replication were completed at 40 degrees C. Also (4) infective lambda particles can be made at 40 degrees C long after bacterial DNA replication has ceased. It appears however that some DNA initiation can occur at 40 degrees C since (1) a limited amount of DNA synthesis does occur at 40 degrees C after prior alignment of the chromosomes by amino acid starvation at 30 degrees C, and (2) after incubation in bromouracil at the restrictive temperature, heavy DNA is found with both strands containing bromouracil.  相似文献   

4.
5.
K12 is a temperature-sensitive (ts) mutant cell line derived from Chinese hamster fibroblasts. When incubated at the nonpermissive temperature, K12 cells exhibit the following properties: (a) the cells cannot initiate DNA synthesis;o (b) the synthesis of cytosol thymidine kinase is suppressed; and (c) the synthesis of three cellular proteins of molecular weights 94, 78, and 58 kdaltons is greatly enhanced. Here we characterize a spontaneous revertant clone, R12, derived from the K12 cells. We selected the revertant clone for its ability to grow at the nonpermissive temperature. Our results indicate that all the traits which constitute the K12 mutant phenotype are simultaneously reverted to the wild type in the revertant cell line, suggesting that the ts mutation of the K12 cells is of regulatory nature and exerts multiple effects on the expressed phenotypes.  相似文献   

6.
Infection of quiescent CV-1 cells with simian virus 40 mutant tsA30 at 37 degrees C resulted in the induction of two rounds of cellular DNA synthesis in T-antigen-positive cells, as previously described for wild-type simian virus 40. Following infection with tsA30 at 40.5 degrees C, T-antigen-positive cells were induced into S phase and reached a diploid G2 DNA content; however, a second S phase was not initiated. The failure of tsA30-infected CV-1 cells to enter tetraploid S phase at 40.5 degrees C identifies a T-antigen function, distinct from T-antigen functions responsible for stimulation of cell DNA synthesis, which is required for initiation of a second round of DNA synthesis without mitosis.  相似文献   

7.
Escherichia coli rnh mutants lacking RNase H activity are capable of recA+-dependent DNA replication in the absence of concomitant protein synthesis (stable DNA replication). In rnh dnaA::Tn10 and rnh delta oriC double mutants in which the dnaA+-dependent initiation of DNA replication at oriC is completely blocked, the recA200 mutation encoding a thermolabile RecA protein renders both colony formation and DNA synthesis of these mutants temperature sensitive. To determine which stage of DNA replication (initiation, elongation, or termination) was blocked, we analyzed populations of these mutant cells incubated at 30 or 42 degrees C in the presence or absence of chloramphenicol (CM) by dual-parameter (DNA-light scatter) flow cytometry. Incubation at 30 degrees C in the presence of CM resulted in cells with a continuum of DNA content up to seven or more chromosome equivalents per cell. The cultures which had been incubated at 42 degrees C in the absence or presence of CM consisted of cells with integral numbers of chromosomes per cell. It is concluded that active RecA protein is required specifically for the initiation of stable DNA replication.  相似文献   

8.
A possible role of the simian virus 40 T antigen in chromosome damages in transformed cells was examined. Two lines of Golden hamster embryonal fibroblasts, transformed by SV40 tsA30 and ts239 mutants (He30 and He239, respectively), were incubated at nonpermissive (40.5-41 degrees C) or permissive (33 degrees C) temperatures. Chromosome aberrations were registered in either subline after 3, 6, 9 and 12 weeks of cultivation under the above conditions. In the both cell lines kept at 33 degrees the frequency of aberrant metaphases and the number of chromosome breaks per cell increased drastically by week 3 of cultivation, and such a state was preserved up to week 12. The frequency of aberrant metaphases in cells cultivated at 41 degrees was maintained at the constant level (He239) or at slightly higher than that in the original culture (He30). The sublines He239, originally incubated at 33 or 40.5 degrees, were then shifted to 40.5 and 33 degrees, respectively. As a result the number of chromosome aberrations either decreased (33----40.5 degrees) or increased (40.5----33 degrees) as early as on day 2, and these patterns were stabilized at the level corresponding to the new conditions. We assayed the induction of DNA breaks in cells, grown at the permissive or nonpermissive temperatures, by using DNA sedimentation in the alkaline sucrose gradient. The DNA sedimentation peaks of cells cultured at 37 and 41 degrees coincided, whereas the DNA of cells cultured at 33 degrees was represented by shorter fragments.  相似文献   

9.
Effects of the Mitotic Cell-Cycle Mutation cdc4 on Yeast Meiosis   总被引:5,自引:0,他引:5       下载免费PDF全文
The mitotic cell-cycle mutation cdc4 has been reported to block the initiation of nuclear DNA replication and the separation of spindle plaques after their replication. Meiosis in cdc4/cdc4 diploids is normal at the permissive temperature (25 degrees) and is arrested at the first division (one-nucleus stage) at the restrictive temperature (34 degrees or 36 degrees). Arrested cells at 34 degrees show a high degree of commitment to recombination (at least 50% of the controls) but no haploidization, while cells arrested at 36 degrees are not committed to recombination. Meiotic cells arrested at 34 degrees show a delayed and reduced synthesis of DNA (at most 40% of the control), at least half of which is probably mitochondrial. It is suggested that recombination commitment does not depend on the completion of nuclear premeiotic DNA replication in sporulation medium.--Transfer of cdc4/cdc4 cells to the restrictive temperature at the onset of sporulation produces a uniform phenotype of arrest at a 1-nucleus morphology. On the other hand, shifts of the meiotic cells to the restrictive temperature at later times produce two additional phenotypes of arrest, thus suggesting that the function of cdc4 is required at several points in meiosis (at least at three different times).  相似文献   

10.
ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells. DNA synthesis in the mutant decreased progressively after an initial increase during the first 3 h at the restrictive temperature. RNA and protein synthesis increased for 20 h and remained at a high level for 40 h. Cells were arrested in S phase as determined by flow microfluorimetry, and DNA chain elongation was retarded as measured by fiber autoradiography. Infection with polyomavirus did not bypass the defect in cell DNA synthesis, and the mutant did not support virus DNA replication at the restrictive temperature. After shift down to the permissive temperature, cell DNA synthesis was restored whereas virus DNA synthesis was not. Analysis of virus DNA synthesized at the restrictive temperature showed that the synthesis of form I and replicative intermediate DNA decreased concurrently and that the rate of completion of virus DNA molecules remained constant with increasing time at the restrictive temperature. These studies indicated that the mutation inhibited ongoing DNA synthesis at a step early in elongation of nascent chains. The defect in virus and cell DNA synthesis was expressed in vitro. [3H]dTTP incorporation was reduced, consistent with the in vivo data. The addition of a high-salt extract prepared from wild-type 3T3 cells preferentially stimulated the incorporation of [3H]dTTP into the DNA of mutant cells at the restrictive temperature. A similar extract prepared from mutant cells was less effective and was more heat labile as incubation of it at the restrictive temperature for 1 h destroyed its ability to stimulate DNA synthesis in vitro, whereas wild-type extract was not inactivated until incubated at that temperature for 3 h.  相似文献   

11.
Integration of DNA of a temperature-sensitive SV40 mutant (tsA239) into the cell genome was studied. The viral A gene (the oncogene) encodes the tumour T antigen which is ts in the mutant and is devoid of mutagenic and transforming activity under non-permissive conditions (40 degrees C). Clones of Chinese hamster cells infected by tsA239 mutant were analysed. Those infected by wild-type SV40 served as controls. As shown by dot-hybridization, SV40 DNA was detected in cells of 14 out of 18 clones infected by tsA mutant and incubated at 40.5 degrees C, and in all 20 clones infected by tsA mutant and incubated under permissive conditions (33 degrees C), the difference between the two groups being insignificant (p greater than 0.05). By means of blot-hybridization it was established that viral DNA was integrated into the cell genome of all 12 clones analysed, belonging to the three experimental series: infection by tsA mutant, incubation at 40.5 and 33 degrees C, infection by wt SV40, incubation at 40.5 degrees C. The number of integration sites ranged from one to four in different clones. Integration of SV40 DNA in tandems was observed. The data presented allow to conclude that integration per se does not play a crucial role in determining the mutagenic and transforming effect of the virus. Obviously, what matters is the activity of viral oncogene product - the T antigen.  相似文献   

12.
In temperature-sensitive (ts) mutants of mouse FM3A cells, the levels of mutagenesis and survival of cells treated with DNA-damaging agents have been difficult to assess because they are killed after their mutant phenotypes are expressed at the nonpermissive temperature. To avoid this difficulty, we incubated the ts mutant cells at the restrictive temperature, 39 degrees C, for only a limited period after inducing DNA damage. We used ts mutants defective in genes for ubiquitin-activating enzyme (E1), DNA polymerase alpha, and p34(cdc2) kinase. Whereas the latter two showed no effect, E1 mutants were sensitized remarkably to UV light if incubated at 39 degrees C for limited periods after UV exposure. Eighty-five percent of the sensitization occurred within the first 12 h of incubation at 39 degrees C, and more than 36 h at 39 degrees C did not produce any further sensitization. Moreover, while the 39 degrees C incubation gave E1 mutants a moderate spontaneous mutator phenotype, the same treatment significantly diminished the level of UV-induced 6-thioguanine resistance mutagenesis and extended the time necessary for expression of the mutation phenotype. These characteristics of E1 mutants are reminiscent of the defective DNA repair phenotypes of Saccharomyces cerevisiae rad6 mutants, which have defects in a ubiquitin-conjugating enzyme (E2), to which E1 is known to transfer ubiquitin. These results demonstrate the involvement of E1 in eukaryotic DNA repair and mutagenesis and provide the first direct evidence that the ubiquitin-conjugation system contributes to DNA repair in mammalian cells.  相似文献   

13.
Three temperature-sensitive morphological mutants of Wangiella dermatitidis were isolated and characterized. The mutants grew in the yeastlike morphology at the permissive temperature (25 degrees C) but expressed a multicellular (Mc) phenotype at the restrictive temperature (37 degrees C). Cultures of Mc 2 and 3 incubated at the restrictive temperature showed rapid reductions in the percentage of budded cells in the population. In contrast, budding continued for several generations in cultures of Mc 1. Incubation of cultures of Mc 2 and 3 at the restrictive temperature for 48 h resulted in nearly total conversion of yeastlike cells to the multicellular form; about 50% of the cells of Mc 1 had converted to multicellular forms after 48 h at the restrictive temperature. Studies using radiolabeled compounds documented that DNA, RNA, and protein synthesis continued at the restrictive temperature. The results suggest that multicellularity is the result of inhibition of bud emergence and cell separation without inhibition of growth nuclear division, and cytokinesis.  相似文献   

14.
Summary A strain which carries a mutation conferring clorobiocin resistance and temperature sensitivity for growth was isolated from Escherichia coli K12. Genetic mapping and the molecular weight of the gene product suggest that the mutation is in the cou gene, specifying a sub-unit of DNA gyrase. Nuclear organisation and segregation and placement of septa are grossly abnormal in the mutant at 42°C. RNA synthesis and initiation of DNA replication are also affected at the restrictive temperature but the rate of DNA chain elongation continues almost undisturbed.  相似文献   

15.
The properties of a naturally occurring temperature-sensitive (ts) mutant of human adenovirus type 7 (Ad7) were studied. Mutant Ad7 (19), or E46-, was the nonhybrid adenovirus component derived from the defective simian virus 40 (SV40)-Ad7 hybrid (PARA). Growth of the mutant was restricted at 40.5 degrees C, and the ratios of virus yields in KB cells at 40.5 and 33 degrees C were 10(-2) to 10(-3). Viral DNA synthesis and the synthesis of adenovirus-specific antigens (tumor, capsid, hexon, and penton antigens) appeared normal at the restrictive temperature. The assembly of virus particles was aberrant, as determined by thin-section of infected cells. The infectivity of mutant virions was heat labile at 50 degrees C, suggesting a ts defect in a structural component of the viron. Analysis by polyacrylamide gel electrophoresis of [35S]methionine-labeled polypeptides synthesized in mutant-infected cells suggested that at least the major virion polypeptides were synthesized at the restrictive temperature. A lack of inhibition of host protein synthesis late in mutant infections, as compared with wild-type (WT) infections at both the permissive and nonpermissive temperatures, made quantitation of infected-cell polypeptides difficult. Analysis of the assembly of capsomeres from cytoplasmic extracts of infected cells on sucrose gradients and by non-dissociating polyacrylamide gel electrophoresis suggested that hexon capsomeres were made at 40.5 degrees C. The hexon capsomeres made by the mutant at either 33 or 40.5 degrees C displayed a decreased migration in the non-dissociating gels compared with the WT hexon capsomeres. The molecular weights of the mutant and WT hexon polypeptides were identical. These results suggest that the ts lesion of this group B human Ad7 mutant may be reflected in altered hexons. The mutant Ad7 interfered with the replication of adenovirus types 2 and 21 at the elevated temperature.  相似文献   

16.
dnaA acts before dnaC in the initiation of DNA replication   总被引:9,自引:4,他引:5       下载免费PDF全文
We constructed a double mutant of Escherichia coli K-12 carrying dnaA(Ts) and dnaC(Cs) lesions. In this mutant DNA synthesis proeceeds normally at 32 degrees C and initiation is inhibited at both 41 and 20 degrees C. By shifting this culture grown at 32 degrees C to the two restrictive temperatures in different time sequences and assaying protein and DNA synthesis of cells growing at different temperatures, we found that dnaA and dnaC genes work independently with dnaA acting before dnaC. While preparing special strains for this work, we also showed that the order of genes in the neighborhood of dnaA is dnaA-tnaA-phoS-ilv.  相似文献   

17.
We describe a new temperature-sensitive mutant of Chinese hamster cell fibroblasts. After a shift to the nonpermissive temperature of 40.5 degrees C, the rates of DNA, RNA, and protein synthesis declined rapidly (to < or = 50% within 12 h) and the progression of unsynchronized cells through the cell cycle was affected. We believe that DNA synthesis came to a halt after a short time, because cells no longer entered the S phase. The decrease in protein synthesis at 40.5 degrees C was shown to be a consequence of a decrease in the number of polysomes, whereas free 80S ribosomes accumulated. We concluded that the components of the protein biosynthetic machinery were intact (ribosomes and soluble factors), but synthesis was limited by a shortage of mRNA. The decline in mRNA production had a significant effect on the synthesis of proteins (e.g., heat shock proteins) translated from short-lived messages. We observed that both polyadenylated and nonpolyadenylated RNA syntheses declined at 40.5 degrees C, whereas the synthesis of small RNAs (4 to 5S) was less reduced. The argument is made that the temperature-sensitive phenotype is the result of a defect affecting mRNA synthesis.  相似文献   

18.
The rate of polypeptide synthesis is inhibited by 80% in Ehrlich cells incubated at 43 degrees C compared to those at 37 degrees C. The regulatory site of translation resides at polypeptide chain initiation. Polypeptide synthesis does not recover at the higher temperature; however, the inhibition is reversed by returning the cells to 37 degrees C. Neither new RNA synthesis or protein synthesis is required for recovery at 37 degrees C, eliminating degradation of mRNA and irreversible denaturation of a protein essential for polypeptide chain initiation. The concentration of 40-S initiation complexes was found to be reduced markedly in heat-shocked cells compared to controls. This was confirmed in the cell-free protein-synthesizing systems prepared from heat-shocked and control cells. Reversible alteration in the activity of components affecting eIF2 function is, therefore, a likely mechanism of regulation in heat-shocked Ehrlich cells. In extracts from heat-shocked cells, Met-tRNA synthetase activity was unaltered compared to control extracts.  相似文献   

19.
Chinese hamster embryo cells transformed with the tsA 58 mutant of Simian virus 40 express the transformed phenotype at the permissive temperature (33 degrees C or 37 degrees C) and a "normal" phenotype at the nonpermissive temperature (40.5 degrees C). Immunofluorescence and immunoprecipitation of T antigens demonstrated that the "T" antigen (100 K) has an increase rate of synthesis and degradation at 40.5 degrees C. However, the cells continue to replicate at the nonpermissive temperature when assayed by flow cytometry and autoradiography. This DNA synthesis was cellular, not viral, and not owing to an increase in DNA repair. When the cell cycle distributions of G1, S, and G2 + M were assayed by the fraction labeled mitoses method, no differences were evident at the permissive and nonpermissive temperature; however, the doubling time was lengthened at 40.5 degrees C (13 hours vs. 100 hours). These results suggest that at 40.5 degrees C, the tsA transformed cells are cycling and dying. However, if the transformed cells are seeded onto monolayers of normal Chinese hamster cells at 40.5 degrees C, the cells are growth arrested when measured by growth assays, flow cytometry, autoradiography, and immunofluorescence for T antigen. Therefore, growth arrest can be obtained in tsA 58 transformed Chinese hamster cells when cocultured with normal Chinese hamster cells.  相似文献   

20.
Studies have been done to characterize further H5ts125, an adenovirus type 5 conditionally lethal, temperature-sensitive (ts) mutant defective in initiation of DNA synthesis and to investigate whether the single-strand-specific DNA-binding (72,000 molecular weight) protein is coded by the mutated viral gene. When H5ts125-infected cells were labeled with [35S]methionine at 32 degrees C and then incubated without isotope at 39.5 degrees C, the mutant's nonpermissive temperature, the 72,000 molecular weight polypeptide was progressively degraded. Immunofluorescence examination of cells infected with wild-type virus, H5ts125, and H5ts149 (a second, unique DNA-minus mutant) showed that immunologically reactive DNA-binding protein was barely detectable in H5ts125-infected cells at 39.5 degrees C, whereas this protein was present in wild-type- and H5TS149-infected cells, that the protein made at 32 degrees C in H5ts125-infected cells lost its ability to bind specific DNA-binding protein antibody when the infected cells were shifted to 39.5 degrees C, and that if H5ts125-infected cells were shifted from the restrictive temperature to 32 degrees C, even in the presence of cycloheximide to stop protein synthesis, immunologically reactive DNA-binding protein reappeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号