首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Lehto T  Lavola A  Kallio E  Aphalo PJ 《Mycorrhiza》2004,14(3):209-212
Boron (B) is an essential micronutrient for plants but it is thought not to be essential for fungi. We studied whether the extraradical mycelia of Paxillus involutus in symbiosis with silver birch (Betula pendula) take up B and transport it to the host plant. We grew mycorrhizal plants in flat microcosms with a partitioning wall, below which there was only extraradical mycelium. A boric acid solution enriched in 10B was applied to these mycelia. Increased 10B/11B isotope ratios were subsequently measured in birch leaves, stems, and roots plus mycorrhizas in the upper compartment. Boron was therefore taken up by the mycorrhizal mycelia and transported to the host plant in this species combination.  相似文献   

2.
The effect of three different nitrogen sources on the growth of external ectomycorrhizal mycelium was studied in Perspex micorocosms. Nonsterile peat was used as substrate. Five different fungal isolates growing in symbiosis with pine seedlings were investigated: two isolates of Paxillus involutus, one of Suillus bovinus and two unidentified ectomycorrhizal fungi isolated from ectomycorrhizal root tips. Three different nitrogen sources were used: ammonium as (NH4)2SO4, nitrate as NaNO3 and a complete nutrient solution (Ingestad 1979), and three different nitrogen concentrations, 1, 2 or 4 mg N/g dry wt. of peat. The mycelial growth of all fungi was found to be negatively affected by the nitrogen amendments, although the sensitivity to nitrogen varied between the isolates. One of the unidentified isolates was extremely sensitive and growth was completely inhibited by all nitrogen treatments. In contrast, the growth of one of the P. involutus isolates was only slightly reduced by the nitrogen amendments. The different nitrogen sources all reduced growth, and since no significant difference was found between the nitrogen sources or between the different nitrogen concentrations the results were pooled to give one value that summarized the effect of nitrogen on mycelial growth. Thus, the mycelial growth of one of the two P. involutus isolates was reduced to approximately 80% of the growth in the control, the other P. involutus and one of the unidentified fungi, vgk 2 89.10, were reduced to 40–50% of the control growth, S. bovinus to 30% of the control and the most sensitive fungus, the unidentified isolate vg 1 87.10, was reduced to 3% of the growth in the control treatment. In all experiments, the shoot to root ratio generally increased, mainly as a result of increased shoot growth.  相似文献   

3.
The production of proteolytic enzymes by several strains of ectomycorrhizal fungi i.e., Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), Suillus bovinus (15-3), Suillus luteus (14-7) on mycelia of Trichoderma harzianum, Trichoderma virens and Mucor hiemalis and sodium caseinate, yeast extract was evaluated. The strains of A. muscaria (16-3) and L. laccata (9-12) were characterized by the highest activity of the acidic and neutral proteases. Taking the mycelia of saprotrophic fungi into consideration, the mycelium of M. hiemalis was the best inductor for proteolytic activity. The examined ectomycorrhizal fungi exhibited higher activity of acidic proteases than neutral ones on the mycelia of saprotrophic fungi, which may imply the participation of acidic proteases in nutrition.  相似文献   

4.
The ectomycorrhizal (ECM) fungi associated with Pinus thunbergii seedlings grown on sand dune were identified by molecular method, and the diversity of bacteria associated with ECM and Extraradical mycelium were examined by Denaturing Gradient Gel Electrophoresis (DGGE) of PCR-amplified 16S rDNA. The mycorrhizal formation rate of 1-year old P. thunbergii seedlings was more than 95%. Cenococcum geophilum was the most dominant ECM fungus, followed by T01, RFLP-8, Russula spp., and Suillus sp. Bacterial community was most diverse with C. geophilum- and RFLP-8-mycorrhiza. Sequencing analysis showed that Burkholderia spp. and Bradyrhizobium spp. were on the surface of ECM short root of seven ECM. The fungi detected as extraradical mycelium using DGGE of 18S rDNA were Suillus bovinus and RFLP-8-mycorrhiza. Bacterial community on the extraradical mycelium was more diverse than those on ECM root tip. Burkholderia spp. and Bradyrhizobium spp. were found also on extraradical mycelium.  相似文献   

5.
 Nitrogen deposition and intentional forest fertilisation with nitrogen are known to affect the species composition of ectomycorrhizal fungal communities. To learn more about the mechanisms responsible for these effects, the relations between fungal growth, nitrogen uptake and nitrogen availability were studied in ectomycorrhizal fungi in axenic cultures and in symbiosis with pine seedlings. Effects of different levels of inorganic nitrogen (NH4) on the mycelial growth of four isolates of Paxillus involutus and two isolates of Suillus bovinus were assessed. With pine seedlings, fungal uptake of 15N-labelled NH4 was studied in short-term incubation experiments (72 h) in microcosms and in long-term incubation experiments (3 months) in pot cultures. For P. involutus growing in symbiosis with pine seedlings, isolates with higher NH4 uptake were affected more negatively at high levels of nitrogen availability than isolates with lower uptake. More NH4 was allocated to shoots of seedlings colonised by a high-uptake isolate, indicating transfer of a larger fraction of assimilated NH4 to the host than with isolates showing lower NH4 uptake rates. Thus low rates of N uptake and N transfer to the host may enable EM fungi avoid stress induced by elevated levels of nitrogen. Seedlings colonised by S. bovinus transferred a larger fraction of the 15N label to the shoots than seedlings colonised by P. involutus. Seedling shoot growth probably constituted a greater carbon sink in pot cultures than in microcosms, since the mycelial growth of P. involutus was more sensitive to high NH4 in pots. There was no homology in mycelial growth rate between pure culture and growth in symbiosis, but N uptake in pure culture corresponded to that during growth in symbiosis. No relationship was found between deposition of antropogenic nitrogen at the sites of origin of the P. involutus isolates and their mycelial growth or uptake of inorganic nitrogen. Accepted: 18 September 1998  相似文献   

6.
Niemi K  Häggman H  Sarjala T 《Mycorrhiza》2003,13(5):283-288
Production of free and conjugated polyamines by one strain of Laccaria proxima (Boud.) Maire, three strains (H, O, K) of Paxillus involutus (Batsch) Fr., and one strain of Pisolithus tinctorius was studied in vitro. Spermidine (Spd) was the main polyamine in the 4-week-old mycelium of all the fungi. It was mainly present in the free form, but it also occurred in conjugated forms. Paxillus involutus strain H released large amounts of free putrescine (Put), and the Pisolithus tinctorius released a compound probably related to cadaverine (Cad). On the other hand, these two fungi contained less conjugated polyamines than the other fungi. In addition to the amounts, the forms (perchloric acid soluble and insoluble) of conjugated polyamines in the mycelium varied between species and strains. L. proxima contained nearly as much insoluble conjugated Spd as free Spd, whereas Paxillus involutus strains O and K contained relatively large amounts of soluble conjugated Spd. The results suggest that ectomycorrhizal fungal species and strains differ in their ability and need to produce conjugated polyamines. The small amounts of soluble conjugated polyamines found in the culture filtrates indicate that some specific conjugated polyamines may be involved in polyamine translocation across the plasma membrane.  相似文献   

7.
The ability of ericoid and ectomycorrhizal fungi to utilize 14C-labelled lignin and O14CH3-labelled dehydropolymer of coniferyl alcohol as sole C sources has been assessed in pure culture studies. The results indicate that ericoid mycorrhizal fungi are more effective in degrading lignin than ectomycorrhizal fungi. Amongst the ectomycorrhizal fungi the facultative mycorrhizal fungus Paxillus involutus degraded lignin more readily than those which are normally considered to be obligately mycorrhizal fungi such as Suillus bovinus and Rhizopogon roseolus. The importance of these lignin degrading capabilities is discussed in relation to the predominance of specific mycorrhiza forms along a gradient of increasing organic matter and hence lignin content of soil.  相似文献   

8.
Summary Seedlings of Pinus resinosa Ait. in test tubes were inoculated with the ectomycorrhizal fungus Paxillus involutus Fr. or with discs of sterile modified Melin-Norkrans (MMN) medium. Paxillus involutus was also inoculated to control tubes in the absence of Pinus resinosa seedlings. In vivo labelling of proteins in Pinus resinosa roots and in Paxillus involutus mycelium was carried out using 35S l-methionine 1, 2, 3, 4, 5 and 7 days after inoculation. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDSPAGE) of the protein extracts from the four treatments and autoradiography demonstrated that the presence of root exudates altered protein synthesis in Paxillus involutus as three major bands disappeared when Paxillus involutus was exposed to root exudates. Protein synthesis in Pinus resinosa was also altered when Paxillus involutus was introduced into the tubes, since at least two bands were more intense when seedlings were inoculated with Paxillus involutus, as compared to control roots. No difference was observed in the growth and the label incorporation of Paxillus involutus growing with or without root exudates. Ectomycorrhizal roots were not formed during this experiment. Gene regulation in this ectomycorrhizal association occurs, therefore, prior to the formation of ectomycorrhizal roots.  相似文献   

9.
Mycorrhizal association ofTricholoma matsutake withPinus densiflora was studied. A naturally establishedP. densiflora stand (age: ca. 45 yr) where occurrences ofT. matsutake sporocarps had been confirmed was studied in lbaraki Prefecture, Japan. Pine root systems connected withT. matsutake sporocarps via the fungal white mycelia were sampled in October 1997. The sampled pine roots were covered overall with mycelia. Under a dissecting microscope, the mycelia were confirmed to form fungal sheaths on the lateral roots. Under a light microscope, transverse and longitudinal sections of these roots showed the presence of both fungal sheaths and Hartig nets, which are typical of ectomycorrhizas. The fungal sheath was ca. 1.5–20 μm. in thickness, and felt prosenchymatous in texture. Hartig nets developed continuously at the cortex and extended to the boundary between cortical cells and endodermal cells. The same ectomycorrhizal morphotype on the pine was also recovered from inside the same mycelial colony (i.e., “shiro”) ofT. matsutake from winter to summer. These results suggest thatT. matsutake has a perennial ectomycorrhizal association withP. densiflora.  相似文献   

10.
We investigated fungal species-specific responses of ectomycorrhizal (ECM) Scots pine (Pinus sylvestris) seedlings on growth and nutrient acquisition together with mycelial development under ambient and elevated CO2. Each seedling was associated with one of the following ECM species: Hebeloma cylindrosporum, Laccaria bicolor, Suillus bovinus, S. luteus, Piloderma croceum, Paxillus involutus, Boletus badius, or non-mycorrhizal, under ambient, and elevated CO2 (350 or 700 μl l−1 CO2); each treatment contained six replicates. The trial lasted 156 days. During the final 28 days, the seedlings were labeled with 14CO2. We measured hyphal length, plant biomass, 14C allocation, and plant nitrogen and phosphorus concentration. Almost all parameters were significantly affected by fungal species and/or CO2. There were very few significant interactions. Elevated CO2 decreased shoot-to-root ratio, most strongly so in species with the largest extraradical mycelium. Under elevated CO2, ECM root growth increased significantly more than hyphal growth. Extraradical hyphal length was significantly negatively correlated with shoot biomass, shoot N content, and total plant N uptake. Root dry weight was significantly negatively correlated with root N and P concentration. Fungal sink strength for N strongly affected plant growth through N immobilization. Mycorrhizal fungal-induced progressive nitrogen limitation (PNL) has the potential to generate negative feedback with plant growth under elevated CO2. Responsible Editor: Herbert Johannes Kronzucker  相似文献   

11.
Kinetics of net phosphate (Pi) uptake was measured on intact ectomycorrhizal and non‐mycorrhizal Pinus sylvestris seedlings using a semihydroponic cultivation method. The depletion of Pi in a nutrient solution was assessed over a 160–0.2 μM Pi gradient. Growth of the pine seedlings was P limited and measurements were performed 7 and 9 weeks after inoculation. Three ectomycorrhizal fungi were studied: Paxillus involutus, Suillus bovinus and Thelephoraterrestris. Pi uptake was extremely fast in plants colonised by P. involutus. The Pi concentration dropped below 0.2 μM within 4–5 h. In plants colonised with S. bovinus this occurred in 5–6 h and in plants associated with T. terrestris 8 h were needed to run through the whole concentration range. Non‐mycorrhizal plants of similar size and nutrient status decreased Pi to a concentration between 1 and 2 μM in 18 h. Data were curve fitted to a two‐phase Michaelis‐Menten equation. The apparent kinetic constants, Km and Vmax, for the high affinity Pi uptake system of the pine roots could be estimated accurately. Vmax of this system was up to 7 times higher in pines associated with P. involutus than in non‐mycorrhizal seedlings. The intact extraradical mycelium greatly increased the absorption surface area of the roots (Vmax). Non‐mycorrhizal plants had a Km between 7.8 and 16.4 μM Pi. Plants mycorrhizal with P. involutus had Km values between 2.4 and 7.2, plants colonised with S. bovinus had a Km between 5.1 and 12.3, and seedlings associated with T. terrestris had a Km from 4.6 to 10.1 μM Pi. All 3 ectomycorrhizal fungi had a strong impact on the Pi absorption capacity of the pine seedlings. The results also demonstrated that there is substantial heterogeneity in kinetic parameters among the different mycorrhizal root systems.  相似文献   

12.
Alnus incana seedlings were successfully inoculated with an endomycorrhizal fungus (Glomus fasciculatus), an ectomycorrhizal fungus (Paxillus involutus) and an isolate ofFrankia (ACN1) simultaneously. The effects of the inoculation treatments on the growth performance of the seedlings were evaluated under controlled conditions.The overall growth performance of the seedlings inoculated with the three organisms was better than those inoculated withFrankia, G. fasciculatus andP. involutus individually or withFrankia+G. fasciculatus andFrankia+P. involutus combinations. The highest growth performance and mycorrhizal infection occurred when the seedlings were inoculated simultaneously withFrankia+G. fasciculatus+P. involutus.  相似文献   

13.
A split-plate method with two media in different concentrations in each compartment was applied for the mycelial growth of four strains of Suillus luteus, S. grevillei, S. granulatus, and S. bovinus. As the glucose concentration in the A-side (the side containing higher concentrations of glucose) increased, the mycelial growth in both A- and B-sides (the side containing lower concentrations of glucose) increased. The mycelial density in both sides and B/A ratio (the ratio of the mycelial growth in the B-side to that in the A-side) also increased, and the colony morphology changed. In both A- and B-sides, the colony area reached maximum at 10g/l glucose in the A-side in most cases and at 33.3g/l in several cases. The results indicated nutrients are translocated from mycelia in the A-side to those in the B-side. High concentration of phosphate or fructose + glucose in the A-side induced better mycelial growth in the B-side. Addition of high concentrations of phosphate to one side enhanced mycelial growth in the other side. Low-temperature incubation promoted the growth in the B-side. Our split-plate culture method will be useful for qualitative study of translocation in ectomycorrhizal fungi.  相似文献   

14.
Transfer of 15N between interacting mycelia of a wood-decomposing fungus (Hypholoma fasciculare) and an ectomycorrhizal fungus (Tomentellopsis submollis) was studied in a mature beech (Fagus sylvatica) forest. The amount of 15N transferred from the wood decomposer to the ectomycorrhizal fungus was compared to the amount of 15N released from the wood-decomposing mycelia into the soil solution as 15N-NH4. The study was performed in peat-filled plastic containers placed in forest soil in the field. The wood-decomposing mycelium was growing from an inoculated wood piece and the ectomycorrhizal mycelium from an introduced root from a mature tree. The containers were harvested after 41 weeks when physical contact between the two foraging mycelia was established. At harvest, 15N content was analyzed in the peat (total N and 15NH4 +) and in the mycorrhizal roots. A limited amount of 15N was transferred to the ectomycorrhizal fungus and this transfer could be explained by 15NH4 + released from the wood-decomposing fungus without involving any antagonistic interactions between the two mycelia. Using our approach, it was possible to study nutritional interactions between basidiomycete mycelia under field conditions and this and earlier studies suggest that the outcomes of such interactions are highly species-specific and depend on environmental conditions such as resource availability.  相似文献   

15.
Enhanced soil respiration in response to elevated atmospheric CO2 has been demonstrated, and ectomycorrhizal (ECM) fungi are of particular interest since they partition host-derived photoassimilates belowground. Although a strong response of ECM fungi to elevated CO2 has been shown, little is still known about the functional diversity among species. We studied carbon (C) partitioning in mycorrhizal Scots pine seedlings in response to short-term CO2 enrichment, using seven ECM species with different ecological strategies. Mycorrhizal associations were synthesised and seedlings grown in large Petri dishes containing peat:vermiculite and nutrient solution for 10–15 weeks, after which half of the microcosms were exposed to elevated CO2 treatment (710 ppm) for 15 days and the other half were kept in ambient CO2 treatment. Partitioning of C was quantified by pulse labelling the seedlings with 14CO2 and examining the distribution of labelled assimilates in shoot, root and extraradical mycelial compartments by destructive harvest and liquid scintillation counting. Fungal biomass was determined with PLFA analysis. The respiratory loss of 14CO2 was on average greater in the elevated CO2 treatment for most species compared to the ambient CO2 treatment. More label was retrieved in the shoots in the ambient CO2 treatment compared to elevated CO2 (significant for P. involutus and P. fallax). Greater amounts of label were found in the extraradical mycelial compartment in all species (except P. involutus) in elevated CO2 compared to ambient CO2 (significant for L. bicolor, P. byssinum, P. fallax and R. roseolus). Fungal biomass production increased significantly with elevated CO2 for two species (H. velutipes and A. muscaria); three species (P. fallax, P. involutus and R. roseolus) showed a similar but non-significant trend, whereas L. bicolor and P. byssinum produced less biomass in elevated CO2 compared to ambient CO2. When 14C in the mycelial compartment and respiration was expressed per unit fungal PLFA the difference between CO2 treatments disappeared. We demonstrated that different ECM fungal isolates respond differently in C partitioning in response to CO2 enrichment. These results suggest that under certain growth conditions, when nutrients are not limiting, ECM fungi respond rapidly to increasing C-availability through changed biomass production and respiration.  相似文献   

16.
Partial nucleotides of the 18S rDNAs ofTricholoma bakamatsutake were sequenced and compared with those of six ectomycorrhizal fungi and a tree. Two probes, Probes 1 and 2, and a pair of primers were designed based on the variable positions in this region. The DNAs ofT. bakamatsutake were isolated from the colonized mycelia in the soil, field-collected fruit-bodies and artifically cultured mycelia. Hybridization with Probe 1 and PCR-amplification with the primers differentiated these DNAs of this fungus from those of eight ectomycorrhizal fungi and two tree species.  相似文献   

17.
《Mycological Research》2006,110(8):985-993
Mycelial development of Phanerochaete velutina extending from wood inocula in 57 × 57 cm trays of non-sterile soil was characterized after adding: (1) collembola; (2) new wood resources; (3) both new wood resources and collembola; and (4) no new resources and no collembola. After 99 d, all systems had produced distinct mycelial cords, much of the diffuse mycelium and thinner cords that were produced early on having regressed. Systems to which new resources (but no collembola) had been added developed thick cords interconnecting inocula with new resources, and much of the non-connected mycelium regressed. Nonetheless, these systems had significantly greater hyphal coverage and mass fractal dimension than the other treatments, resulting from outgrowth from the new resources. Unexpectedly, morphology of grazed systems with no added resources was very similar to that of ungrazed systems with no added resources, apparently because the collembola grazed on senescing hyphae that would ultimately have regressed. Where new resources and collembola were added, there was proliferation of fine mycelium along connective cords and elsewhere, but this was not as extensive as in the new resource/no collembola systems, the fine mycelium apparently being grazed in patches. Fungus gnat (family Sciaridae) larvae contaminated eight (out of 14) trays with no added collembola, but none of the systems to which collembola had been added. They burrowed around the wood and caused cords to be severed.  相似文献   

18.
A simple in vitro system is described for the synthesis ofAbies firma-Cenococcum geophilum ectomycorrhizas. SterilizedA. firma seedlings on both MMN and FH media were inoculated with hyphal discs from actively growing margins ofC. geophilum colonies. Typical ectomycorrhizas formed on seedlings on FH medium after 3 mo of incubation. By light microscopy, the synthesized mycorrhizas were seen to possess a thin mantle from which emanated extraradicle hyphae and highly branched, rarely septate intracortical Hartig net mycelium, characteristic ectomycorrhizal features. This is the first report of aseptic ectomycorrhization ofA. firma seedlings byC. geophilum. This model system will facilitate detailed studies on ectomycorrhizal development ofAbies species.  相似文献   

19.
The hemagglutinating (HA) activity of the submerged mycelium and the culture liquid (CL) of four strains ofLentinus edodes was studied. The HA activity of the CLs proved to be much higher than that of mycelia. The carbohydrate specificity of fungal agglutinating factors was determined. HA activity was investigated as a function of the inoculum size, cultivation temperature, and culture age. The agglutinating activity of different morphogenetic structures ofL. edodes F-249, including mycelium, brown mycelial mat (MM), primordia, and fruiting bodies, was studied. MM was found to possess the maximum HA activity, which can be explained by the possible involvement of agglutinins in the formation of MM, which is composed of glued hyphae.  相似文献   

20.
Despite their ecological relevance, field studies of the extraradical mycelia of ectomycorrhizal (ECM) fungi are rare. Here we examined in situ interactions between ECM mycelia and host vigour. Ectomycorrhizal mycelia were harvested with in-growth mesh bags buried under Norway spruce (Picea abies) clones planted in 1994 in a randomized block design. Mycelial biomass was determined and fungal species were identified by denaturing gradient gel electrophoresis (DGGE) and sequencing of the internal transcribed spacer 1 (ITS1) region. Microbial community structure in the mycelium was investigated by phospholipid fatty acid (PLFA) profiling. Compared to slow-growing spruce clones, fast-growing clones tended to support denser mycelia where the relative proportions of Atheliaceae fungi and PLFAs indicative of Gram-positive bacteria were higher. Ascomycetes and PLFAs representative of Gram-negative bacteria were more common with slow-growing clones. In general, the ECM mycelial community was similar to the ECM root-tip community. Growth rate of the hosts, the ECM mycelial community and the microbes associated with the mycelium were related, suggesting multitrophic interactions between trees, fungi and bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号