首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antisera against purified contact site A glycoprotein, with an apparent molecular weight of 80 X 10(3) (80 kDa), from Dictyostelium discoideum were raised by using Freund's adjuvant (antiserum-A) and by using Alu-Gel-S (antiserum-B) as immunoadjuvants. They were converted into Fab fragments for the cell agglutination assay. Fab fragments of antiserum-B inhibited only EDTA-stable cell contact, whereas Fab fragments of antiserum-A (Fab-A) inhibited EDTA-sensitive cell contact as well as EDTA-stable cell contact. We prepared several cell types in order to identify target antigens for the adhesion-blocking Fab-A in EDTA-sensitive cell contact or EDTA-stable cell contact. One of these cell types produced contact site A without N-glycosidically-linked carbohydrate chains. It is known that contact site A contains two kinds of N-glycosidically-linked carbohydrate chains (carbohydrates I and II, Yoshida, M., Stadler, J., Bertholdt, G., and Gerisch, G. (1984) EMBO J. 3, 2653-2670). When growth-phase cells were treated with tunicamycin (TM) at a final concentration of 2 micrograms/ml in nutrient medium (TM-pretreated cells), the cells produced contact site A without N-glycosidically-linked carbohydrate chains (53 kDa) at the normal developmental stage. These cells lacked EDTA-sensitive cell contact as well as EDTA-stable cell contact. The neutralization of the adhesion-blocking Fab-A was done by using particulate fractions from each cell type. The blocking activity in EDTA-stable cell contact was neutralized by the cell type with carbohydrate II. Taking these results into consideration, EDTA-stable cell contact may be formed by the interaction between protein moieties of contact site A and carbohydrate II. Concerning EDTA-sensitive cell contact, the blocking activity was neutralized by each cell type irrespective of TM treatment. This suggests that O-glycosidically-linked carbohydrate chains play a role in EDTA-sensitive cell contact. Moreover, the biological activity in EDTA-sensitive cell contact of TM-pretreated cells suggests that N-glycosidically-linked carbohydrate chains may also be involved in this contact.  相似文献   

2.
In Dictyostelium discoideum, a surface glycoprotein with Mr 80,000 (gp80) has been found to mediate the EDTA-resistant contact sites A at the aggregation stage of development. To evaluate the role of the carbohydrate moiety in cell-cell adhesion, we have examined the accumulation and activity of an altered gp80 molecule in two glycosylation (modB) mutants. Both mutants synthesize an altered gp80 of lower molecular size. This modB-gp80 can be detected by the monoclonal antibody 80L5C4, which is capable of blocking cell-cell adhesion (C. -H. Siu, T. Y. Lam, and A. Choi, (1985) J. Biol. Chem. 260, 16,030-16,036). The mutant cells exhibit both EDTA-sensitive and EDTA-resistant types of cell-cell binding, though to a lesser extent than that of the parental strain, and the EDTA-resistant binding sites are blocked in the presence of 80L5C4 Fab. Mutant cells can also bind Covaspheres conjugated with gp80. These results suggest that the modB-gp80 protein still retains the domain essential for its cell binding activity and the carbohydrate moiety affected by the modB mutation is not directly involved in cell-cell adhesion.  相似文献   

3.
During the development of Dictyostelium discoideum from the growth phase to the aggregation stage, a glycoprotein with an apparent mol. wt. of 80 kd is known to be expressed on the cell surface. This glycoprotein, referred to as contact site A, has been implicated in the formation of species-specific, EDTA-stable contacts of aggregating cells. When developing cells were labeled in vivo with [35S]sulfate, the 80-kd glycoprotein was found to be the most prominently sulfated protein. Another strongly sulfated protein had an apparent mol. wt. of 130 kd and was, like the 80-kd glycoprotein, developmentally regulated and associated with the particulate fraction of the cells. The [35S]sulfate incorporated into the 80-kd and 130-kd proteins was not present as tyrosine-O-sulfate, a modified amino acid found in many proteins of mammalian cells. D. discoideum cells incubated with [35S]sulfate in the presence of tunicamycin, an inhibitor of N-glycosylation, produced a 66-kd protein that reacted with monoclonal antibodies raised against the 80-kd glycoprotein, but no longer contained [35S]sulfate. These results suggest that sulfation of the 80-kd glycoprotein occurred on carbohydrate residues. The possible importance of sulfation for a role of the 80-kd glycoprotein in cell adhesion is discussed.  相似文献   

4.
After activation, wild-type Dictyostelium discoideum spores germinate rapidly and synchronously in phosphate buffer as well as in complex medium. Mutants defective in spore germination were isolated and characterized. These mutants (called grm) did not germinate normally in buffer but did germinate in complex medium in the presence of bacteria. One mutant (grm B) swelled normally, but amoebae were not formed. Another mutant (grm F) swelled and germinated poorly in buffer. The members of the third group of mutants (A, C, D, and E) did not swell or give rise to amoebae in buffer.  相似文献   

5.
It has been believed that Dictyostelium discoideum cell membranes contain no sialic acid. In this study, however, we found that contact site A, the cell adhesion molecule of D. discoideum, is a major glycoprotein containing sialic acids. This suggests that sialic acid in non-reducing terminal plays an important role in the cell adhesion in which contact site A is involved.  相似文献   

6.
We isolated mutants defective in aggregation (aggregation-less) by mutagenizing the "double-bypass" mutant HG592 of Dictyostelium discoideum as the parental strain. One of the mutants expressed the contact site A glycoprotein with an apparent molecular weight of 80 X 10(3) on the cell surface in the normal developmental stage and retained EDTA-stable cell contact as well as EDTA-sensitive cell contact. However, the mutant failed to aggregate on agar plates with bacteria. This mutant was designated HG700. We could not identify any differences between this mutant and the parental strain in levels of adenylate cyclase or extracellular phosphodiesterase activity, or in its chemotaxis toward cAMP. The mutant had greatly decreased the incorporation of [35S] sulfate into the particulate fractions of the cells starved for 6 h. This suggests that the modification by sulfation may crucially affect the mechanism of cell aggregation.  相似文献   

7.
Developmentally regulated cohesion of Dictyostelium discoideum can be blocked by the Fab fragment of antiserum prepared against a glycoprotein of about 80,000 daltons, gp80, purified from the membranes of developing amoebae. Immunoprecipitation of gp80 with this serum, from 32P-labeled cell extracts of aggregating D. discoideum amoebae showed it to be a phosphoprotein. Serine phosphate was found in the molecule. All multiple isoelectric forms of gp80 were phosphorylated. Synthesis of the phosphorylated form of gp80 was found to be limited to the period of aggregation and coincided with the period of incorporation of [35S]methionine into gp80. Phosphorylation could be rapidly inhibited by cycloheximide suggesting that phosphorylation occurs only on newly made gp80. No unphosphorylated gp80 could be detected in cell extracts.  相似文献   

8.
The contact site A glycoprotein, a cell adhesion protein of aggregating Dictyostelium cells, was labeled with fatty acid, myo-inositol, phosphate and ethanolamine in vivo, indicating that the protein is anchored in the membrane by a lipid. This lipid was not susceptible to phosphatidyl inositol specific phospholipase C. When cleaved with nitrous acid or when subjected to acetolysis, the anchor released lipids which were different from those released from Trypanosoma variant cell surface glycoprotein, a protein with a known phosphatidyl inositol-glycan anchor. Resistance to weak and sensitivity to strong alkali indicated that the fatty acid in the contact site A glycolipid anchor was in an amide bond. On incubation with sphingomyelinase, a lipid with the chromatographic behavior of ceramide was released. These results suggest that the contact site A glycoprotein is anchored by a ceramide based lipid glycan.  相似文献   

9.
《The Journal of cell biology》1987,105(6):2523-2533
Dictyostelium discoideum expresses a developmentally regulated cell surface glycoprotein of Mr 80,000 (gp80), which has been implicated in the formation of the EDTA-resistant contact sites A at the cell aggregation stage. To determine whether gp80 participates directly in cell binding and, if so, its mode of action, we conjugated purified gp80 to Covaspheres (Covalent Technology Corp., Ann Arbor, MI) and investigated their ability to bind to cells. The binding of gp80- Covaspheres was dependent on the developmental stage of the cells, with maximal interaction at the late aggregation stage. Scanning electron microscopic studies revealed the clustering of gp80-Covaspheres at the polar ends of these cells, similar to the pattern of gp80 distribution on the cell surface as reported earlier (Choi, A. H. C., and Siu, C.- H., 1987, J. Cell Biol., 104:1375-1387). Precoating cells with an adhesion-blocking anti-gp80 monoclonal antibody inhibited the binding of gp80-Covaspheres, suggesting that Covasphere-associated gp80 might undergo homophilic interaction with gp80 on the cell surface. Quantitative binding of 125I-labeled gp80 to intact cells gave an estimate of 1.5 X 10(5) binding sites per cell at the aggregation stage. Binding of soluble gp80 to cells was blocked by precoating cells with the anti-gp80 monoclonal antibody. The ability of gp80 to undergo homophilic interaction was further tested in a filter-binding assay, which showed that 125I-labeled gp80 was able to interact with gp80 bound on nitrocellulose in a dosage-dependent manner. In addition, reassociation of cells was significantly inhibited in the presence of soluble gp80, suggesting that gp80 has a single cell-binding site. These results are consistent with the notion that gp80 mediates cell- cell binding at the aggregation stage of development via homophilic interaction.  相似文献   

10.
J Faix  G Gerisch    A A Noegel 《The EMBO journal》1990,9(9):2709-2716
The contact site A (csA) glycoprotein is a developmentally regulated cell adhesion molecule which mediates EDTA-stable cell contacts during the aggregation stage of Dictyostelium discoideum. A transformation vector was constructed which allows overexpression of the csA protein during the growth phase. In that stage the csA protein is normally not expressed; in the transformants it was transported to the cell surface and carried all modifications investigated, including a phospholipid anchor and two types of oligosaccharide chain. csA expression enabled the normal non-aggregative growth-phase cells to form EDTA-stable contacts in suspension and to assemble into three-dimensional aggregates when moving on a substratum. After prolonged cultivation of csA overexpressing transformants in nutrient medium the developmental program was found to be turned on, as it normally occurs only in starving cells. During later development of transformed cells, the csA glycoprotein remained present on the cell surface, while it is down-regulated in the wild type. It was detected in both the prestalk and prespore regions of the multicellular slugs made from transformed cells.  相似文献   

11.
1. The relationship between glycosylation of contact site A (csA) of 80 kDa with two types of N-linked carbohydrates, I and II, and EDTA-resistant cell contact of Dictyostelium was investigated by tunicamycin treatment. 2. Carbohydrate I glycosylation, involved in a shift of csA from 66 to 80 kDa, was more sensitive to tunicamycin than carbohydrate II glycosylation in its shift from 53 to 66 kDa. 3. The appearance of csA of 80 kDa corresponded to that of EDTA-resistant cell contact. Carbohydrate I may be essential for EDTA-resistant cell contact. 4. In starved cells treated with tunicamycin, only 4-8% of moieties labeled with wheat germ agglutinin in carbohydrate II were modified.  相似文献   

12.
《The Journal of cell biology》1993,123(6):1453-1462
Folic acid and cAMP are chemoattractants in Dictyostelium discoideum, which bind to different surface receptors. The signal is transduced from the receptors via different G proteins into a common pathway which includes guanylyl cyclase and acto-myosin. To investigate this common pathway, ten mutants which do not react chemotactically to both cAMP and folic acid were isolated with a simple new chemotactic assay. Genetic analysis shows that one of these mutants (KI-10) was dominant; the other nine mutants were recessive, and comprise nine complementation groups. In wild-type cells, the chemoattractants activate adenylyl cyclase, phospholipase C, and guanylyl cyclase in a transient manner. In mutant cells the formation of cAMP and IP3 were generally normal, whereas the cGMP response was altered in most of the ten mutants. Particularly, mutant KI-8 has strongly reduced basal guanylyl cyclase activity; the enzyme is present in mutant KI-10, but can not be activated by cAMP or folic acid. The cGMP response of five other mutants is altered in either magnitude, dose dependency, or kinetics. These observations suggest that the second messenger cGMP plays a key role in chemotaxis in Dictyostelium.  相似文献   

13.
14.
A proteinase (called Proteinase I) present in myxamoebae of the cellular slime mold, Dictyosteliumdiscoideum, was labeled invivo with [32P] by growth of cells on media containing [32P] orthophosphate. The labeled proteinase was purified to apparent homogeneity and characterized by dissociation chromatography and quantitative immune-precipitin analysis. Based upon the results of these studies it was concluded that phosphoryl moieties were tightly associated (presumably covalently bonded) with the polypeptide subunits of Proteinase I.  相似文献   

15.
Cyclic adenosine 3':5' monophosphate (cAMP) and cell-cell contact regulate developmental gene expression in Dictyostelium discoideum. Developing D. discoideum amoebae synthesize and secrete cAMP following the binding of cAMP to their surface cAMP receptor, a response called cAMP signaling. We have demonstrated two responses of developing D. discoideum amoebae to cell-cell contact. Cell-cell contact elicits cAMP secretion and alters the amount of cAMP secreted in a subsequent cAMP signaling response. Depending upon experimental conditions, bacterial-amoebal contact and amoebal-amoebal contact can enhance or diminish the amount of cAMP secreted during a subsequent cAMP signaling response. We have hypothesized that cell-cell contact regulates D. discoideum development by altering cellular and extracellular levels of cAMP. To begin testing this hypothesis, these responses were further characterized. The two responses to cell-cell contact are independent, i.e., they can each occur in the absence of the other. The responses to cell-cell contact also have unique temperature dependences when compared to each other, cAMP signaling, and phagocytosis. This suggests that these four responses have unique steps in their transduction mechanisms. The secretion of cAMP in response to cell-cell contact appears to be a non-specific response; contact between D. discoideum amoebae and Enterobacter aerogenes, latex beads, or other amoebae elicits cAMP secretion. Despite the apparent similarities of the effects of bacterial-amoebal and amoebal-amoebal contact on the cAMP signaling response, this contact-induced response appears to be specific. Latex beads addition does not alter the magnitude of a subsequent cAMP signaling response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Two families of glycoprotein are defined in Dictyostelium discoideum by the presence of different glycoconjugates, both of which are highly immunogenic in mice. The previously described monoclonal antibodies MUD50 and MUD62 recognize the glycoconjugates and identify the respective glycoprotein families. Both types of glycosylation occur on vegetative and developmentally regulated glycoproteins. The immunodominant components of both families are reportedly O-linked sugars, but Western blots do not identify any glycoprotein that has both O-glycans, suggesting that there are two independently processed types of O-linked glycosylation in D. discoideum. The synthesis of the two O-glycan families is affected by glycosylation-defective mutations. Strains with a mutation at the modB locus lack one of these glycosylation types (that recognized by MUD50) and this mutation alters the size of two minor glycoproteins in the second family. Two new mutants, HU2470 (mod-352) and HU2471 (mod-353), lack the epitope recognized by MUD62. The two mutations map to different chromosomes. The mod-353 mutation also affects the size of PsA, a cell surface glycoprotein carrying the modB-dependent O-glycan.  相似文献   

17.
An 80-kDa glycoprotein of Dictyostelium discoideum, designated contact site A, has been implicated in EDTA-stable cell adhesion. This protein is known to be the major sulfated protein of aggregation-competent cells and has been shown to contain two types of carbohydrate, sulfated type 1 and unsulfated type 2 carbohydrate moieties. Here we investigate the cell-free sulfation of this protein. In the homogenate of developing cells, [35S]sulfate was transferred by endogenous sulfotransferase from [35S]3'-phosphoadenosine-5'-phosphosulfate to the contact site A glycoprotein and to various other endogenous proteins. The sulfate was transferred to carbohydrate rather than to tyrosine residues. After differential centrifugation of the homogenate, the capacity for sulfation of the contact site A glycoprotein was barely detected in the plasma membrane-enriched 10,000 X g pellet fraction which contained the bulk of this glycoprotein, but was largely recovered in the 100,000 X g pellet fraction which contained only a small portion of this glycoprotein. After sucrose gradient centrifugation, the membranes containing the sulfation capacity were found to have a density characteristic for Golgi membranes. In immunoblots, monoclonal antibodies raised against the contact site A glycoprotein recognized not only this 80-kDa protein, but also a sulfatable 68-kDa protein found in the 100,000 X g pellet fraction. The 68-kDa protein did not react with monoclonal antibodies against type 2 carbohydrate but was converted by endoglycosidases F and H into a 53-kDa protein, indicating that it was a partially glycosylated form of the 80-kDa glycoprotein containing only type 1 carbohydrate. Isoelectric focusing showed that a substantial portion of the 68-kDa glycoprotein was unsulfated, even after cell-free sulfation. The 68-kDa glycoprotein was not found in the plasma membrane-enriched 10,000 X g pellet fraction and did not accumulate in parallel with the 80-kDa contact site A glycoprotein during cell development. We conclude that the 68-kDa glycoprotein is a precursor that is converted by attachment of type 2 carbohydrate and sulfation of type 1 carbohydrate into the mature 80-kDa glycoprotein. The precursor nature of the 68-kDa glycoprotein was supported by results obtained with mutant HL220 which is defective in glycosylation (Murray, B. A., Wheeler, S., Jongens, T., and Loomis, W. F. (1984) Mol. Cell. Biol. 4, 514-519). This mutant specifically lacks type 2 carbohydrate and produces a 68-Kda glycoprotein instead of the 80-kDa contact site A glycoprotein (Yoshida, M., Stadler, J., Bertholdt, G., and Gerisch, G. (1984) EMBO J. 3, 2663-2670).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Amoebae of the cellular slime mold Dictyostelium discoideum grown in the presence of bromodeoxyuridine are killed on exposure to near-ultraviolet light. By using this phenomenon, a method was devised by which mutants of D. discoideum that are temperature-sensitive for growth can be readily obtained. Three such mutants have been characterized genetically and each was found to be associated with a different linkage group. Two of these linkage groups have not previously been described.  相似文献   

19.
20.
The modB mutation eliminates specific carbohydrate epitopes from glycoproteins which are expressed primarily in prespore and spore cells of differentiating Dictyostelium discoideum. Spores formed by the mutant show several phenotypes. Whereas mutant spores germinate efficiently after heat activation, they germinate poorly after urea activation. Following germination, at least one glycosylation-defective glycoprotein is cleaved, and the larger fragment is released in soluble form from the spore coat. However, an earlier difference in the spore coat can be traced back to the nongerminated spore coat, as detected by the elutability of protein from intact spores by chemical extraction. An altered character of the pregermination spore coat is also suggested by increased labeling by a fluorescent lectin which binds to its interior. The findings are consistent with a change in the character of certain molecular contacts leading to altered characteristics of the mutant spore coat, which are specific because they are distinctive from changes observed in another glycosylation mutant which affects a different epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号