首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyandry, where females mate with multiple males, means that a male''s reproductive success will depend both on his ability to acquire mates and the ability of his sperm to compete effectively for fertilizations. But, how do males partition their reproductive investment between these two episodes of selection? Theory predicts that increases in ejaculate investment will come at a cost to investment in other reproductive traits. Although evidence revealing such trade-offs is accumulating, we know little about their genetic basis. Here, I report patterns of genetic (co)variation for a range of traits subject to pre- and post-copulatory sexual selection in the guppy Poecilia reticulata, a promiscuous livebearing fish in which males alternate between courtship and sneak matings to obtain copulations. The analyses of genetic variation and covariation for these behaviours revealed a strong genetic predisposition for one tactic over the other. Both mating tactics were also strongly genetically integrated with the level of sexual ornamentation and ejaculate quality. Males that predominantly performed sneak matings were less ornamented but had faster swimming sperm than those that predominantly used courtship. These patterns of genetic variation and covariation reveal potential evolutionary constraints on the direction of selection of pre- and post-copulatory traits, and support sperm competition theory by revealing a trade-off between sexual attractiveness and investment in ejaculates.  相似文献   

2.
The sensory systems employed by animals to locate potential mates are diverse. Among insects, chemical and acoustic signals are commonly used over long distances, with visual signals playing a role in close-range orientation and courtship. Within groups that exhibit a scramble competition mating system, selection on mate searching ability will be particularly strong. Clearly, aspects of the species ecology, such as habitat complexity and population density, will be crucial in the evolution of mate searching systems and sexual signals. Praying mantids exhibit both chemical and visual sexual signalling behaviour, and also vary in their ecology. This study employs scanning electron microscopy of antennal sensory morphology and behavioural assays to investigate the relative importance of chemical and visual signalling in two Australian praying mantid species: Pseudomantis albofimbriata and Ciulfina biseriata . As predicted, the high level of habitat complexity, low population density and strong male dispersal capability of P. albofimbriata corresponded to the use of airborne sex pheromones. Conversely, the open habitat, high population density, and poor dispersal of C. biseriata corresponded to a greater reliance on short-range visual cues for mate location.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 307–313.  相似文献   

3.
For sexual selection to act on a given sex, there must exist variation in the reproductive success of that sex as a result of differential access to mates or fertilisations. The mechanisms and consequences of sexual selection acting on male animals are well documented, but research on sexual selection acting on females has only recently received attention. Controversy still exists over whether sexual selection acts on females in the traditional sense, and over whether to modify the existing definition of sexual selection (to include resource competition) or to invoke alternative mechanisms (usually social selection) to explain selection acting on females in connection with reproduction. However, substantial evidence exists of females bearing characters or exhibiting behaviours that result in differential reproductive success that are analogous to those attributed to sexual selection in males. Here we summarise the literature and provide substantial evidence of female intrasexual competition for access to mates, female intersexual signalling to potential mates, and postcopulatory mechanisms such as competition between eggs for access to sperm and cryptic male allocation. Our review makes clear that sexual selection acts on females and males in similar ways but sometimes to differing extents: the ceiling for the elaboration of costly traits may be lower in females than in males. We predict that current and future research on female sexual selection will provide increasing support for the parsimony and utility of the existing definition of sexual selection.  相似文献   

4.
ABSTRACT: Sexual selection is a major force driving evolution and is intertwined with ecological factors. Differential allocation of limited resources has a central role in the cost of reproduction. In this paper, I review the costs and benefits of mating in tettigoniids, focussing on nuptial gifts, their trade-off with male calling songs, protandry and how mate density influences mate choice. Tettigoniids have been widely used as model systems for studies of mating costs and benefits; they can provide useful general insights. The production and exchange of large nuptial gifts by males for mating is an important reproductive strategy in tettigoniids. As predicted by sexual selection theory spermatophylax size is condition dependent and is constrained by the need to invest in calling to attract mates also. Under some circumstances, females benefit directly from the nuptial gifts by an increase in reproductive output. However, compounds in the nuptial gift can also benefit the male by prolonging the period before the female remates. There is also a trade-off between adult male maturation and mating success. Where males mature before females (protandry) the level of protandry varies in the direction predicted by sperm competition theory; namely, early male maturation is correlated with a high level of first inseminations being reproductively successful. Lastly, mate density in bushcrickets is an important environmental factor influencing the behavioural decisions of individuals. Where mates are abundant, individuals are more choosey of mates; when they are scarce, individuals are less choosey. This review reinforces the view that tettigoniids provide excellent models to test and understand the economics of matings in both sexes.  相似文献   

5.
Juvenile population density has profound effects on subsequent adult development, morphology and reproductive investment. Yet, little is known about how the juvenile social environment affects adult investment into chemical sexual signalling. Male gumleaf skeletonizer moths, Uraba lugens, facultatively increase investment into antennae (pheromone receiving structures) when reared at low juvenile population densities, but whether there is comparable adjustment by females into pheromone investment is not known. We investigate how juvenile population density influences the ‘calling'' (pheromone-releasing) behaviour of females and the attractiveness of their pheromones. Female U. lugens adjust their calling behaviour in response to socio-sexual cues: adult females reared in high juvenile population densities called earlier and for longer than those from low juvenile densities. Juvenile density also affected female pheromonal attractiveness: Y-maze olfactometer assays revealed that males prefer pheromones produced by females reared at high juvenile densities. This strategic investment in calling behaviour by females, based on juvenile cues that anticipate the future socio-sexual environment, likely reflects a response to avoid mating failure through competition with neighbouring signallers.  相似文献   

6.
Following Darwin's original insights regarding sexual selection, studies of intrasexual competition have mainly focused on male competition for mates; by contrast, female reproductive competition has received less attention. Here, we review evidence that female mammals compete for both resources and mates in order to secure reproductive benefits. We describe how females compete for resources such as food, nest sites, and protection by means of dominance relationships, territoriality and inter‐group aggression, and by inhibiting the reproduction of other females. We also describe evidence that female mammals compete for mates and consider the ultimate causes of such behaviour, including competition for access to resources provided by mates, sperm limitation and prevention of future resource competition. Our review reveals female competition to be a potentially widespread and significant evolutionary selection pressure among mammals, particularly competition for resources among social species for which most evidence is currently available. We report that female competition is associated with many diverse adaptations, from overtly aggressive behaviour, weaponry, and conspicuous sexual signals to subtle and often complex social behaviour involving olfactory signalling, alliance formation, altruism and spite, and even cases where individuals appear to inhibit their own reproduction. Overall, despite some obvious parallels with male phenotypic traits favoured under sexual selection, it appears that fundamental differences in the reproductive strategies of the sexes (ultimately related to parental investment) commonly lead to contrasting competitive goals and adaptations. Because female adaptations for intrasexual competition are often less conspicuous than those of males, they are generally more challenging to study. In particular, since females often employ competitive strategies that directly influence not only the number but also the quality (survival and reproductive success) of their own offspring, as well as the relative reproductive success of others, a multigenerational view ideally is required to quantify the full extent of variation in female fitness resulting from intrasexual competition. Nonetheless, current evidence indicates that the reproductive success of female mammals can also be highly variable over shorter time scales, with significant reproductive skew related to competitive ability. Whether we choose to describe the outcome of female reproductive competition (competition for mates, for mates controlling resources, or for resources per se) as sexual selection depends on how sexual selection is defined. Considering sexual selection strictly as resulting from differential mating or fertilisation success, the role of female competition for the sperm of preferred (or competitively successful) males appears particularly worthy of more detailed investigation. Broader definitions of sexual selection have recently been proposed to encompass the impact on reproduction of competition for resources other than mates. Although the merits of such definitions are a matter of ongoing debate, our review highlights that understanding the evolutionary causes and consequences of female reproductive competition indeed requires a broader perspective than has traditionally been assumed. We conclude that future research in this field offers much exciting potential to address new and fundamentally important questions relating to social and mating‐system evolution.  相似文献   

7.
For dioecious animals, reproductive success typically involves an exchange between the sexes of signals that provide information about mate location and quality. Typically, the elaborate, secondary sexual ornaments of males signal their quality, while females may signal their location and receptivity. In theory, the receptor structures that receive the latter signals may also become elaborate or enlarged in a way that ultimately functions to enhance mating success through improved mate location. The large, elaborate antennae of many male moths are one such sensory structure, and eye size may also be important in diurnal moths. Investment in these traits may be costly, resulting in trade‐offs among different traits associated with mate location. For polyandrous species, such trade‐offs may also include traits associated with paternity success, such as larger testes. Conversely, we would not expect this to be the case for monandrous species, where sperm competition is unlikely. We investigated these ideas by evaluating the relationship between investment in sensory structures (antennae, eye), testis, and a putative warning signal (orange hindwing patch) in field‐caught males of the monandrous diurnal painted apple moth Teia anartoides (Lepidoptera: Lymantriidae) in southeastern Australia. As predicted for a monandrous species, we found no evidence that male moths with larger sensory structures had reduced investment in testis size. However, contrary to expectation, investment in sensory structures was correlated: males with relatively larger antennae also had relatively larger eyes. Intriguingly, also, the size of male orange hindwing patches was positively correlated with testis size.  相似文献   

8.
When females mate multiply (polyandry) both pre‐ and post‐copulatory sexual selection can occur. Sperm competition theory predicts there should be a trade‐off between investment in attracting mates and investment in ejaculate quality. In contrast, the phenotype‐linked fertility hypothesis predicts a positive relationship should exist between investment in attracting mates and investment in ejaculate quality. Given the need to understand how pre‐ and post‐copulatory sexual selection interacts, we investigated the relationship between secondary sexual traits and ejaculate quality using the European house cricket, Acheta domesticus. Although we found no direct relationship between cricket secondary sexual signals and ejaculate quality, variation in ejaculate quality was dependent on male body weight and mating latency: the lightest males produced twice as many sperm as the heaviest males but took longer to mate with females. Our findings are consistent with current theoretical models of sperm competition. Given light males may have lower mating success than heavy males because females take longer to mate with them in no‐choice tests, light males may be exhibiting an alternative reproductive tactic by providing females with more living sperm. Together, our findings suggest that the fitness of heavy males may depend on pre‐copulatory sexual selection, while the fitness of light males may depend on post‐copulatory fertilization success.  相似文献   

9.
Social influences on mate choice are predicted to influence evolutionary divergence of closely related taxa, because of the key role mate choice plays in reproductive isolation. However, it is unclear whether females choosing between heterospecific and conspecific male signals use previously experienced social information in the same manner or to the same extent that they do when discriminating among conspecific mates only. We tested this using two field cricket sister species (Teleogryllus oceanicus and Teleogryllus commodus), in which considerable information is known about the role of male calling song in premating isolation, in addition to the influence of acoustic experience on the development of reproductive traits. We manipulated the acoustic experience of replicate populations of both species and found, unexpectedly, that experience of male calling song during rearing did not change how accurate females were in choosing a conspecific over a heterospecific male song during playback trials. However, females with acoustic experience were considerably less responsive to male song compared with naïve females. Our results suggest that variation in the acoustic environment affects mate choice in both species, but that it may have a limited impact on premating isolation. The fact that social flexibility during interspecific mate discrimination does not appear to operate identically to that which occurs during conspecific mate discrimination highlights the importance of considering the context in which animals exercise socially flexible mating behaviours. We suggest an explanation for why social flexibility might be context dependent and discuss the consequences of such flexibility for the evolution of reproductive isolation.  相似文献   

10.
Males of the non-territorial damselfly Enallagma hageni have two alternative tactics for finding mates: (1) they search the banks of the pond for unmated females (searching tactic), or (2) wait at oviposition sites for females that resurface prematurely from underwater oviposition (waiting tactic). Although the searching tactic yielded more fertilizations than the waiting tactic, for time invested, the waiting tactic became increasingly successful later in the reproductive season due to changes in female oviposition behaviour. The two tactics can be maintained in the population because males can mate by the waiting tactic during the afternoon when few females are available to searchers. Among males visiting the breeding site an equal number of times, males mating by a mixture of tactics were as successful as males mating only by the main tactic. Because marked males were found to use both tactics, these behaviours are interpreted as evidence of behavioural plasticity within individuals, representing one conditional evolutionary strategy.  相似文献   

11.
Two very basic ideas in sexual selection are heavily influenced by numbers of potential mates: the evolution of anisogamy, leading to sex role differentiation, and the frequency dependence of reproductive success that tends to equalize primary sex ratios. However, being explicit about the numbers of potential mates is not typical to most evolutionary theory of sexual selection. Here, we argue that this may prevent us from finding the appropriate ecological equilibria that determine the evolutionary endpoints of selection. We review both theoretical and empirical advances on how population density may influence aspects of mating systems such as intrasexual competition, female choice or resistance, and parental care. Density can have strong effects on selective pressures, whether or not there is phenotypic plasticity in individual strategies with respect to density. Mating skew may either increase or decrease with density, which may be aided or counteracted by changes in female behaviour. Switchpoints between alternative mating strategies can be density dependent, and mate encounter rates may influence mate choice (including mutual mate choice), multiple mating, female resistance to male mating attempts, mate searching, mate guarding, parental care, and the probability of divorce. Considering density-dependent selection may be essential for understanding how populations can persist at all despite sexual conflict, but simple models seem to fail to predict the diversity of observed responses in nature. This highlights the importance of considering the interaction between mating systems and population dynamics, and we strongly encourage further work in this area.  相似文献   

12.
Sexual selection     
Competition over mates takes many forms and has far-reaching consequences for many organisms. Recent work suggests that relative reproductive rates of males and females, sperm competition and quality variation among mates affect the strength of sexual selection. Song, other display, body size, visual ornaments and material resource offerings are often sexually selected. There is much empirical evidence of mate choice, and its evolution is clarified by mathematical models. Recent advances in theory also consider costs of choice, effects of deleterious mutations, fast and slow evolution of preferences and preferred traits, and simultaneous preferences for several traits. Contests over mates are important; so is sperm competition, scrambles, endurance rivalry, and coercion. The latter mechanisms have received less attention than mate choice. Sexual selection may explain puzzling aspects of plant pollination biology.  相似文献   

13.
In many species, males can influence the amount of resources their mates invest in reproduction. Two favoured hypotheses for this observation are that females assess male quality during courtship or copulation and alter their investment in offspring accordingly, or that males manipulate females to invest heavily in offspring produced soon after mating. Here, we examined whether there is genetic variation for males to influence female short-term reproductive investment in Drosophila melanogaster, a species with strong sexual selection and substantial sexual conflict. We measured the fecundity and egg size of females mated to males from multiple isofemale lines collected from populations around the globe. Although these traits were not strongly influenced by the male's population of origin, we found that 22 per cent of the variation in female short-term reproductive investment was attributable to the genotype of her mate. This is the first direct evidence that male D. melanogaster vary genetically in their proximate influence on female fecundity, egg size and overall reproductive investment.  相似文献   

14.
Female choice for male ornamental traits is widely accepted as a mechanism by which females maximize their reproductive success and/or offspring quality. However, there is an increasing empirical literature that shows a fitness benefit of genetic diversity and a tendency for females to use genetic dissimilarity as a criterion for mate choice. This genetic compatibility hypothesis for female mate choice presents a paradox. How can females use both an absolute criterion, such as male ornamentation, and a relative criterion, such as genetic dissimilarity, to choose their mates? Here, we present potential solutions for this dilemma and the empirical evidence supporting them. The interplay between these two contrasting forms of female mate choice presents an exciting empirical and theoretical challenge for evolutionary ecologists.  相似文献   

15.
In some cases male animals engage in aggressive contests for access to females, in others they adopt more passive strategies and invest in traits that assist them in detecting females or in competing with rivals in other ways, such as sperm competition. One possible factor determining the fitness of these different strategies is population density. Theoretically, aggressive tactics should be found at intermediate population densities. At low densities males that invest in traits related to searching for mates could be favoured, whereas at the highest densities males that fight over females might pay excessive costs for this behaviour because of the number of rival males that they will encounter. Current empirical evidence is mostly consistent with this scheme: in some cases it seems that traits that are associated with locating mates are favoured at low densities, with aggression related traits favoured at higher densities, and in other cases aggression is selected but as density increases less aggressive strategies become more common. There remain substantial differences between species, however, and I discuss how variation in mating system, in the costs of aggression and in the nature of sperm competition, plus ecological differences between species, can change the relationship between population density and the fitness consequences of aggressive and passive behavioural strategies.  相似文献   

16.
Abstract Much of the theory of sexual selection assumes that females do not generally experience difficulties getting their eggs fertilized, yet sperm limitation is occasionally documented. How often does male limitation form a selection for female traits that improve their mating rate? The question is difficult to test, because if such traits evolve to be efficient, sperm limitation will no longer appear to be a problem to females. Here, we suggest that changes in choosiness between populations, and in particular between virgin and mated females, offer an efficient way to test this hypothesis. We model the “wallflower effect,” that is, changes in female preferences due to time and mortality costs of remaining unmated (for at least some time). We show that these costs cause adaptive reductions of female choice, even if mate encounter rates appear high and females only rarely end their lives unfertilized. We also consider the population consequences of plastic or fixed mate preferences at different mate encounter rates. If mate choice is plastic, we confirm earlier verbal models that virgins should mate relatively indiscriminately, but plastic increase of choosiness in later matings can compensate and intensify sexual selection on the male trait, particularly if there is last male sperm precedence. Plastic populations will cope well with unusual conditions: eagerness of virgins leads to high reproductive output and a relaxation of sexual selection at low population densities. If females lack such plasticity, however, population‐wide reproductive output may be severely reduced, whereas sexual selection on male traits remains strong.  相似文献   

17.
Sexual selection theory predicts a positive correlation between relative parental investment and mate choice. In syngnathid fishes (seahorses and pipefish), males brood offspring in specialized brooding structures. While female-female mating competition has been demonstrated in some pipefishes, all seahorses (genus Hippocampus) studied to date have been found to have conventional sex roles with greater male-male competition for access to mates despite possessing the most complex brood structures in the family. Although multiple mating is common in pipefish, seahorses are again exceptional, exhibiting strict genetic monogamy. Both demographic and behavioural explanations have been offered to explain the lack of multiple mating in seahorse species, but these hypotheses have not yet been explicitly addressed. We investigated mating systems and brood parentage of the pot-bellied seahorse, Hippocampus abdominalis, a temperate-water species that is socially promiscuous with conventional sex roles in laboratory populations. We observed promiscuous courtship behaviour and sex-role reversal in high density, female-biased field populations of H. abdominalis. We hypothesize that sex roles are plastic in H. abdominalis, depending on local population density and sex ratio. Despite promiscuous courtship behaviour, all assayed male seahorses were genetically monogamous in both laboratory and wild populations. Physiological limitations associated with embryo incubation may explain the absence of multiple mating in seahorses and may have played an important role in the development of the unique reproductive behaviour typical in these species.  相似文献   

18.
Female choice based on male secondary sexual traits is well documented, although the extent to which this selection can drive an evolutionary divergence in male traits among populations is less clear. Male field crickets Teleogryllus oceanicus attract females using a calling song and once contacted switch to courtship song to persuade them to mate. These crickets also secrete onto their cuticle a cocktail of long‐chained fatty acids or cuticular hydrocarbons (CHCs). Females choose among potential mates based on the structure of male acoustic signals and on the composition of male CHC profiles. Here, we utilize two naturally occurring mutations that have arisen independently on two Hawaiian islands and render the male silent to ask whether the evolutionary loss of acoustic signalling can drive an evolutionary divergence in the alternative signalling modality, male CHC profiles. QSTFST comparisons revealed strong patterns of CHC divergence among three populations of crickets on the islands of Hawaii, Oahu and Kauai. Contrasts between wild‐type and flatwing males on the islands of Oahu and Kauai indicated that variation in male CHC profiles within populations is associated with the loss of acoustic signalling; flatwing males had a relatively low abundance of long‐chained CHCs relative to the short‐chained CHCs that females find attractive. Given their dual functions in desiccation resistance and sexual signalling, insect CHCs may be particularly important traits for reproductive isolation and ultimately speciation.  相似文献   

19.
When interactions with heterospecifics prevent females from identifying conspecific mates, natural selection can promote the evolution of mating behaviours that minimize such interactions. Consequently, mating behaviours may diverge among conspecific populations in sympatry and in allopatry with heterospecifics. This divergence in conspecific mating behaviours-reproductive character displacement-can initiate speciation if mating behaviours become so divergent as to generate reproductive isolation between sympatric and allopatric conspecifics. We tested these ideas by using artificial neural networks to simulate the evolution of conspecific mate recognition in populations sympatric and allopatric with different heterospecifics. We found that advertisement calls diverged among the different conspecific populations. Consequently, networks strongly preferred calls from their own population to those from foreign conspecific populations. Thus, reproductive character displacement may promote reproductive isolation and, ultimately, speciation among conspecific populations.  相似文献   

20.
Shenoy K 《PloS one》2012,7(2):e30611
Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments) and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号