首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0°C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7°C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13°C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13°C during and 12h after irradiation. Mild hypothermia at 20 and 30°C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13°C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX (γ-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13°C compared to the rapid repair at 37°C. For both γ-H2AX foci and OCDLs, the return of lymphocytes to 37°C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against radiation.  相似文献   

2.
Ionizing radiation damage to a mammalian genome is modeled using continuous time Markov chains. Models are given for the initial infliction of DNA double strand breaks by radiation and for the enzymatic processing of this initial damage. Damage processing pathways include DNA double strand break repair and chromosome exchanges. Linear, saturable, or inducible repair is considered, competing kinetically with pairwise interactions of the DNA double strand breaks. As endpoints, both chromosome aberrations and the inability of cells to form clones are analyzed. For the post-irradiation behavior, using the discrete time Markov chain embedded at transitions gives the ultimate distribution of damage more simply than does integrating the Kolmogorov forward equations. In a representative special case explicit expressions for the probability distribution of damage at large times are given in the form used for numerical computations and comparisons with experiments on human lymphocytes. A principle of branching ratios, that late assays can only measure appropriate ratios of repair and interaction functions, not the functions themselves, is derived and discussed.This work was supported in # DMS-9025103  相似文献   

3.
4.
Shao C  Prise KM  Folkard M 《Mutation research》2008,638(1-2):139-145
The aim of this study was to investigate the signaling factor and its pathway involved in the targeted irradiation-induced bystander response from glioblastoma cells to primary fibroblasts. After co-culturing with a glioblastoma T98G population where a fraction of cells had been individually irradiated with a precise number of helium particles, additional micronucleus (MN) were induced in the non-irradiated human fibroblasts AG01522 cells and its yield was independent of irradiation dose. This bystander MN induction was eliminated by treating the cells with either aminoguanidine (AG), an iNOS inhibitor, or anti-transforming growth factor-beta1 (anti-TGF-beta1). In addition, TGF-beta1 could be released from irradiated T98G cells but this release was inhibited by AG. In consistent, TGF-beta1 could also be induced from T98G cells treated with diethylamine nitric oxide (DEANO), a donor of nitric oxide (NO). Moreover, the effect of TGF-beta1 on bystander AG01522 cells was investigated. It was found that reactive oxygen species (ROS) and MN were induced in AG01522 cells after TGF-beta1 treatment. Our results indicate that, downstream of NO, TGF-beta1 plays an important role in the targeted T98G cells induced bystander response to AG0 cells by further causing DNA damage in vicinal fibroblasts through a ROS related pathway. This study may have implications for properly evaluating the secondary effects of radiotherapy.  相似文献   

5.
The effects of pesticides on the induction of unscheduled DNA synthesis in SV-40 transformed human cells (VA-4) in culture with and without metabolic activation by liver microsomes was studied. Results showed that ten of the thirteen compounds examined either directly or upon metabolic activation induced unscheduled DNA synthesis in the human cell system used. The DNA repair kinetics and size of the repaired regions resulting from treatment with four of the chemicals (Carbaryl, Chlordane, Dieldrin and 2.4-D Fluid) were studied by 313 nm photolysis of repaired regions containing bromodeoxyuridine (BUdR). The size of the repaired regions differed between compounds but could generally be classified as either of the X-ray (short) or UV-type (long).  相似文献   

6.
Ultraviolet radiation causes lesions in bacterial DNA which are repaired by several enzyme systems. Wide variations in the efficiency of repair for differentE. Coli strains are inadequately explained by a simple presence or absence of one or more repair systems. It is proposed that a major factor in the variations is the sensitivity of the repair systems themselves to ultraviolet induced interactions between proteins and the repair enzyme cistrons. An analytic approach is applied to pre-existing data to establish the numbers of thymine and cytosine bases in the repair cistrons, lending support to the model. The findings imply that bacteria will become sensitive to UV upon inhibition of one of four amino acids.  相似文献   

7.
We used the bromouracil-photolysis technique to estimate the sizes of the repaired regions in normal human and xeroderma pigmentosum (XP) cells irradiated by gamma-rays aerobically or anoxically. After 1 1/2 hours of incubation, single-strand breaks were repaired and the repaired regions were small--one to two BrUra residues--for cells irradiated aerobically or anoxically. After a 20-hour incubation, the repaired region in normal cells showed a component mimicking U.V.-repair. There were large patches (approximately 30 BrUra residues) in the approximate ratios of one per six chain breaks for aerobic irradiation and one per three chain breaks for anoxic irradiation. XP cells, however, only showed large patches at 20 hours if they had been irradiated aerobically. We could not detect such regions in XP cells irradiated anoxically. These results indicate (1) that some part of ionizing damage mimics excision of U.V. damage in that the repair patches are large and the repair takes an appreciable time; (2) the types of such damage depend on whether the irradiation is done aerobically or anoxically; and (3) XP cells are defective in repairing a component of anoxic damage.  相似文献   

8.
Zhu Y  Yang H  Chen Q  Lin J  Grossman HB  Dinney CP  Wu X  Gu J 《DNA Repair》2008,7(2):141-148
XPC, a key protein in the nucleotide excision repair (NER) pathway, recognizes damaged DNA and initiates NER. Genetic variations in the XPC gene might be associated with altered DNA repair capacities (DRC). In this study, we genotyped three XPC polymorphisms, Ala499Val (C-->T), PAT (-/+) and Lys939Gln (A-->C), and measured the DNA damage/DRC by alkaline comet assay challenged by BPDE and gamma-radiation in 476 healthy subjects. We also evaluated the associations between DNA damage/DRC and genotypes of XPC polymorphisms. Compared with the XPC Lys939Gln homozygous wild type (AA) subjects, subjects with the variant alleles (AC and CC) had significantly higher DNA damages induced by BPDE (Median and 95% confidence interval [CI]: 3.16 (3.01-3.44) vs. 2.88 (2.51-3.05), P=0.01), and gamma-radiation (4.18 (3.94-4.44) vs. 3.71 (3.49-4.04), P=0.01). However, subjects with the variant alleles (CT and TT) of Ala499Val exhibited a 8.6% and 13.1% decrease in DNA damages induced by BPDE (P=0.05) and gamma-radiation (P=0.001), respectively. Significant correlations were found between genotypes and induced DNA damages in XPC Lys939Gln (For BPDE: R=0.12, P=0.01; for gamma-radiation: R=0.094, P=0.046) and Ala499Val (For BPDE: R=-0.11, P=0.03; for gamma-radiation: R=-0.16, P=0.0009). The haplotypes "T-A" (in the order of Ala499Val-PAT-Lys939Gln) was associated with the lowest DNA damages. Our results suggested that the DRC of host cells might be modulated by specific XPC polymorphisms.  相似文献   

9.
DNA damage checkpoints are involved in postreplication repair   总被引:2,自引:0,他引:2  
Barbour L  Ball LG  Zhang K  Xiao W 《Genetics》2006,174(4):1789-1800
Saccharomyces cerevisiae MMS2 encodes a ubiquitin-conjugating enzyme variant, belongs to the error-free branch of the RAD6 postreplication repair (PRR) pathway, and is parallel to the REV3-mediated mutagenesis branch. A mutation in genes of either the MMS2 or the REV3 branch does not result in extreme sensitivity to DNA-damaging agents; however, deletion of both subpathways of PRR results in a synergistic phenotype. Nevertheless, the double mutant is not as sensitive to DNA-damaging agents as a rad6 or rad18 mutant defective in the entire PRR pathway, suggesting the presence of an additional subpathway within PRR. A synthetic lethal screen was employed in the presence of a sublethal dose of a DNA-damaging agent to identify novel genes involved in PRR, which resulted in the isolation of RAD9 as a candidate PRR gene. Epistatic analysis showed that rad9 is synergistic to both mms2 and rev3 with respect to killing by methyl methanesulfonate (MMS), and the triple mutant is nearly as sensitive as the rad18 single mutant. In addition, rad9 rad18 is no more sensitive to MMS than the rad18 single mutant, suggesting that rad9 plays a role within the PRR pathway. Moreover, deletion of RAD9 reduces damage-induced mutagenesis and the mms2 spontaneous and induced mutagenesis is partially dependent on the RAD9 gene. We further demonstrated that the observed synergistic interactions apply to any two members between different branches of PRR and G1/S and G2/M checkpoint genes. These results suggest that a damage checkpoint is essential for tolerance mediated by both the error-free and error-prone branches of PRR.  相似文献   

10.
The method of ultracentrifugation of a nucleoid in a neutral sucrose gradient in the presence of ethidium bromide was used to detect gamma radiation-induced DNA breaks and their resynthesis in human HEp-2 cells and fibroblasts taken from a skin biopsy of patients with homocystinuria (HCN). In HEp-2 cells pretreated with interferon the nucleoid sedimentation rate after gamma irradiation did not differ from that in intact cells, that is, interferon exerted its protective effect whereas in HCN cells interferon was ineffective. After incubation with interferon, the resynthesis of the induced breaks was enhanced in these cells as well.  相似文献   

11.
The brains of male Fisher 344 rats bearing 80-150 mg intracerebral 9L/Ro tumors were irradiated with doses of 1,250-5,000 rads of x- or gamma-rays. At various times after irradiation, the cerebellum and tumor were excised, dissociated into single cells and the DNA from these cells sedimented through alkaline sucrose gradients in zonal rotors with slow gradient reorienting capability. Quantitation of the DNA repair kinetics demonstrated that the process in both tumor cells and neurons has a fast and slow phase. Although all other alternatives cannot be completely eliminated, we suggest that these two phases are most reasonably interpreted as representing repair of lesions in very accessible and less accessible regions of the genome rather than 1) repair of different types of lesions such as single- or double-strand breaks or 2) removal of immediate breaks and breaks induced during excision repair of latent base damage. The slow repair phase is saturable, but not inducible in both tumor cells and neurons. The data suggest that tumor cells restore their chromosomal DNA structure to the unirradiated state faster than neurons because 1) they contain more of the repair system per unit of DNA and 2) a larger proportion of their genetic material is comprised of very accessible regions. The data also suggest that the entire tumor cell genome may be accessible to the repair enzyme(s), while it is possible that a portion of the neuronal genome may be completely inaccessible.  相似文献   

12.
It is controversially discussed that irradiation induces bystander effects via gap junction channels and/or diffusible cellular factors such as nitric oxide or cytokines excreted from the cells into the environment. But up to now the molecular mechanism leading to a bystander response is not well understood. To discriminate between both mechanisms of bystander response, (i) mediated by gap junctional communication and/or (ii) mediated by diffusible molecules, we used non-communicating Jeg3 malignant trophoblast cells transfected with inducible gap junction proteins, connexin43 and connexin26, respectively, based on the Tet-On system. We co-cultivated X-ray irradiated and non-irradiated bystander Jeg3 cells for 4 h, separated both cell populations by flow cytometry and evaluated the expression of activated p53 by Western blot analysis. The experimental design was proven with communicating versus non-communicating Jeg3 cells. Interestingly, our results revealed a bystander effect which was independent from gap junctional communication properties and the connexin isoform expressed. Therefore, it seems more likely that the bystander effect is not mediated via gap junction channels but rather by paracrine mechanisms via excreted molecules in Jeg3 cells.  相似文献   

13.
The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA‐developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real‐time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition‐induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity‐induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell‐cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro‐apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. J. Cell. Biochem. 107: 723–731, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
We have investigated the processing of adducts formed by covalent binding of aflatoxin B1 (AFB1) to DNA in confluent cultures of African green monkey cells. Repair synthesis elicited by AFB1 adducts was deficient in alpha DNA sequences compared to that in bulk DNA, although the initial levels of modification were the same for these DNAs. The removal of the primary initial adduct, AFB1-N7-Guanine, was deficient in alpha DNA and the kinetics of its loss resembled those previously reported for removal from total DNA in xeroderma pigmentosum cells of complementation group A. Spontaneous loss of the AFB1 moiety or the concomitant loss of the guanine to yield an apurinic site account for these results. The formation of the more chemically stable secondary product, AFB1-triamino-Pyrimidine, occurred more rapidly and to a greater extent in alpha DNA than in bulk DNA, probably because of slower removal of the primary product. The excision repair patch size for AFB1 adducts in alpha DNA was only 10 nucleotides compared to 20 nucleotides for repair of AFB1 adducts in bulk DNA. Irradiation of cells with low doses of UV prior to or immediately after treatment with AFB1 increased the rate and extent of removal of AFB1 adducts from alpha DNA to the levels found in the bulk DNA, indicating that the formation of pyrimidine dimers or their repair may alter the chromatin structure of alpha DNA sufficiently to facilitate its repair.  相似文献   

15.
Chloroquine (ClQ) inhibited the repair of DNA damage produced in cultured rat liver cells by methyl methanesulfonate (MMS). MMS caused fragmentation of single-strand DNA in alkaline sucrose gradients. Repair of the damage was followed by observing the restoration of the normal sedimentation pattern at intervals after treatment. Repair was significant by 7 h and nearly complete at 24 h. Addition of ClQ during the repair peiod markedly reduced the rate of repair. Also, ClQ increased the lethality of MMS, which could be due to the inhibition of repair. ClQ was found to inhibit protein synthesis, but the effect on repair is probably not due entirely to this action since comparable inhibition of protein synthesis by cycloheximide produced a lesser degree of delay in repair.  相似文献   

16.
Aging is associated with a reduction in the DNA repair capacity under oxidative stress. However, whether the DNA damage and repair capacity can be a biomarker of aging remains controversial. In this study, we demonstrated two cause-and-effect relationships, the one is between the DNA damage and repair capacity and the cellular age, another is between DNA damage and repair capacity and the level of oxidative stress in human embryonic lung fibroblasts (2BS) exposed to different doses of hydrogen peroxide (H2O2). To clarify the mechanisms of the age-related reduction in DNA damage and repair capacity, we preliminarily evaluated the expressions of six kinds of pivotal enzymes involved in the two classical DNA repair pathways. The DNA repair capacity was observed in human fibroblasts cells using the comet assay; the age-related DNA repair enzymes were selected by RT-PCR and then verified by Western blot in vitro. Results showed that the DNA repair capacity was negatively and linearly correlated with (i) cumulative population doubling (PD) levels only in the group of low concentration of hydrogen peroxide treatment, (ii) with the level of oxidative stress only in the group of young PD cells. The mRNA expression of DNA polymerase δ1 decreased substantially in senescent cells and showed negative linear-correlation with PD levels; the protein expression level was well consistent with the mRNA level. Taken together, DNA damage and repair capacity can be a biomarker of aging. Reduced expression of DNA polymerase δ1 may be responsible for the decrease of DNA repair capacity in senescent cells.  相似文献   

17.
Nucleotide excision repair (NER) is the most versatile and universal pathway of DNA repair that is capable of repairing virtually any damages other than a double strand break (DSB). This pathway has been shown to be inducible in several systems. However, question of a threshold and the nature of the damage that can signal induction of this pathway remain poorly understood. In this study it has been shown that prior exposure to very low doses of osmium tetroxide enhanced the survival of wild type Saccharomyces cerevisiae when the cells were challenged with UV light. Moreover, it was also found that osmium tetroxide treated rad3 mutants did not show enhanced survival indicating an involvement of nucleotide excision repair in the enhanced survival. To probe this further the actual removal of pyrimidine dimers by the treated and control cells was studied. Osmium tetroxide treated cells removed pyrimidine dimers more efficiently as compared to control cells. This was confirmed by measuring the in vitro repair synthesis in cell free extracts prepared from control and primed cells. It was found that the uptake of active 32P was significantly higher in the plasmid substrates incubated with extracts of primed cells. This induction is dependent on de novo synthesis of proteins as cycloheximide treatment abrogated this response. The nature of induced repair was found to be essentially error free. Study conclusively shows that NER is an inducible pathway in Saccharomyces cerevisiae and its induction is dependent on exposure to a threshold of a genotoxic stress.  相似文献   

18.
19.
Summary The response of Neurospora crassa to DNA damage induced by UV irradiation has been studied using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Whole cell extracts of irradiated and untreated cultures were compared. Five polypeptides that show changes in response to DNA damage have been identified.Several mutagen sensitive strains of Neurospora were also tested for polypeptide changes on 2-D PAGE. Profiles of whole cell extracts of these mutant strains were compared to wild type. Two changes were observed in the meiotic mutant, mei-3 and one change was detected in the excision repair mutant, upr-1. Two changes were also detected in the allelic mutants, uvs-3 and nuh-4. Profiles of uvs-3 and nuh-4 revealed one polypeptide that was missing and another polypeptide which appeared to shift to a more basis position. This same shift was detected in wild type after induction by UV irradiation or heat shock.  相似文献   

20.
The lethal effect of UV radiation of HeLa cells is least in mitosis and greatest in late G1-early S. Photochemical damage to HeLa DNA, as measured by thymine-containing dimer formation and by alkaline sucrose sedimentation, also increases from mitosis towards early S phase. Computer simulations of UV absorption by an idealized HeLa cell at different stages of the cell cycle indicate that changes in damage could be due solely to changes in chromatin geometry. But survival is not exclusively a function of damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号