首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we described a novel chick neural transmembrane glycoprotein, which interacts with the extracellular matrix proteins tenascin-C and tenascin-R. This protein, termed CALEB, contains an epidermal growth factor-like domain and appears to be a novel member of the epidermal growth factor family of growth and differentiation factors. Here we analyze the interaction between CALEB and tenascin-C as well as tenascin-R in more detail, and we demonstrate that the central acidic peptide segment of CALEB is necessary to mediate this binding. The fibrinogen-like globe within tenascin-C or -R enables both proteins to bind to CALEB. We show that two isoforms of CALEB in chick and rodents exist that differed in their cytoplasmic segments. To begin to understand the in vivo function of CALEB and since in vitro antibody perturbation experiments indicated that CALEB might be important for neurite formation, we analyzed the expression pattern of the rat homolog of CALEB during development of retinal ganglion cells, after optic nerve lesion and during graft-assisted retinal ganglion cell axon regeneration by in situ hybridization. These investigations demonstrate that CALEB mRNA is dynamically regulated after optic nerve lesion and that this mRNA is expressed in most developing and in one-third of the few regenerating (GAP-43 expressing) retinal ganglion cells.  相似文献   

2.
Chicken acidic leucine-rich EGF-like domain containing brain protein (CALEB) was identified by combining binding assays with immunological screens in the chicken nervous system as a novel member of the EGF family of differentiation factors. cDNA cloning indicates that CALEB is a multidomain protein that consists of an NH2-terminal glycosylation region, a leucine-proline–rich segment, an acidic box, a single EGF-like domain, a transmembrane, and a short cytoplasmic stretch. In the developing nervous system, CALEB is associated with glial and neuronal surfaces. CALEB is composed of a 140/130-kD doublet, an 80-kD band, and a chondroitinsulfate-containing 200-kD component. The latter two components are expressed in the embryonic nervous system and are downregulated in the adult nervous system. CALEB binds to the extracellular matrix glycoproteins tenascin-C and -R. In vitro antibody perturbation experiments reveal a participation of CALEB in neurite formation in a permissive environment.  相似文献   

3.
CALEB/NGC is a neural member of the epidermal growth factor protein family expressed in axon and synapse-rich areas of the nervous system and shown to be important for neurite formation. It can bind to the extracellular matrix proteins tenascin-R and tenascin-C. Here we show that CALEB/NGC interacts with the Golgi-associated protein PIST. PIST was originally described as an interaction partner of the small GTPase TC10 and was then found to be Golgi-associated by binding to syntaxin-6 and to be important for the transport of frizzled proteins and the cystic fibrosis transmembrane conductance regulator to the plasma membrane. In addition, PIST was demonstrated to be involved in autophagy and linked to processes of neurodegeneration. CALEB/NGC interacts with PIST in the yeast two-hybrid system. This interaction can be confirmed by co-immunoprecipitations and co-localization studies. The juxtamembrane cytoplasmic peptide segment of CALEB/NGC, highly conserved during evolution, mediates the binding to PIST. CALEB/NGC co-localizes with PIST in the Golgi apparatus of transfected COS7 cells and in Golgi-derived vesicles after brefeldin A or nocodazole treatment. Co-localization studies in primary hippocampal cells and analysis of Purkinje cells of colchicine-treated rats, serving as an in vivo model system to block microtubule-dependent transport processes, support the view that PIST is an interaction partner of CALEB/NGC and implicate that this interaction may play a role in the intracellular transport of CALEB/NGC.  相似文献   

4.
A monoclonal antibody, Mab 8A2, that recognizes a novel set of gangliosides was produced by immunizing a mouse with Embryonic Day 14 chick optic nerve. Immunohistochemical studies of the developing chick retina revealed a complex pattern of Mab 8A2 immunoreactivity. Initially, staining is concentrated in the optic fiber layer in the central retina. Later in development, the most intense staining is seen at the periphery of the retina and 8A2 immunoreactivity appears in other retina layers. In the adult retina, 8A2 immunoreactivity is lost from the optic fiber layer but persists in the inner plexiform layer, inner nuclear layer, and outer plexiform layer. Cell culture experiments showed intense staining of neurites from retinal ganglion cells but no staining of Muller cells. Biochemical characterization of the epitope recognized by Mab 8A2 suggests that it includes a 9-O-acetyl group that is present on five different gangliosides. The 8A2 immunoreactive gangliosides are distinct from and have slower mobilities on thin-layer chromatographs than those recognized by Mab D1.1 which recognizes 9-O-acetyl GD3.  相似文献   

5.
The C-terminal G3 domains of lecticans mediate crosslinking to diverse extracellular matrix (ECM) proteins during ECM assembly, through their C-type lectin (CLD) subdomains. The structure of the rat aggrecan CLD in a Ca(2+)-dependent complex with fibronectin type III repeats 3-5 of rat tenascin-R provides detailed support for such crosslinking. The CLD loops bind Ca2+ like other CLDs, but no carbohydrate binding is observed or possible. This is thus the first example of a direct Ca(2+)-dependent protein-protein interaction of a CLD. Surprisingly, tenascin-R does not coordinate the Ca2+ ions directly. Electron microscopy confirms that full-length tenascin-R and tenascin-C crosslink hyaluronan-aggrecan complexes. The results are significant for the binding of all lectican CLDs to tenascin-R and tenascin-C. Comparison of the protein interaction surface with that of P-selectin in complex with the PGSL-1 peptide suggests that direct protein-protein interactions of Ca(2+)-binding CLDs may be more widespread than previously appreciated.  相似文献   

6.
The axon-associated protein F11 is a GPI-anchored member of the immunoglobulin superfamily that promotes axon outgrowth and that shows a complex binding pattern toward multiple cell surface and extracellular matrix proteins including tenascin-R and tenascin-C. In this study, we demonstrate that tenascin-R and tenascin-C differentially modulate cell adhesion and neurite outgrowth of tectal cells on F11. While soluble tenascin-R increases the number of attached cells and the percentage of cells with neurites on immobilized F11, tenascin-C stimulates cell attachment to a similar extent but decreases neurite outgrowth. The cellular receptor interacting with F11 has been previously identified as NrCAM; however, in the presence of tenascin-R or tenascin-C cell attachment and neurite extension are independent of NrCAM. Antibody perturbation experiments indicate that beta(1) integrins instead of NrCAM function as receptor for neurite outgrowth of tectal cells on an F11.TN-R complex. Cellular binding assays support the possibility that the interaction of F11 to NrCAM is blocked in the presence of tenascin-R and tenascin-C. Furthermore, a sandwich binding assay demonstrates that tenascin-R and tenascin-C are able to form larger molecular complexes and to link F11 polypeptides by forming a molecular bridge. These results suggest that the molecular interactions of F11 might be regulated by the presence of tenascin-R and tenascin-C.  相似文献   

7.
M Matsunaga  K Hatta  M Takeichi 《Neuron》1988,1(4):289-295
We investigated the role of N-cadherin cell adhesion molecules in the histogenesis of the chicken neural retina. In the undifferentiated retina of early embryos, N-cadherin is almost evenly distributed. With differentiation, N-cadherin was gradually localized in particular cell layers. In the 8.5 to 10.5 day embryos, N-cadherin was most abundant in the optic nerve fiber layer, the plexiform layers and the outer limiting membrane. Thereafter, this molecule gradually diminished from most parts of the retina, except in the outer limiting membrane. When incubated with Fab fragments of a polyclonal antibody to N-cadherin, retinas of early embryos tended to dissociate and could not be maintained as a tissue mass. Retinas from older embryos were not dissociated by the Fab, but their morphogenesis was severely affected. We conclude that N-cadherin is essential for maintaining the overall structure of the undifferentiated retina, but during development, its role becomes restricted to maintaining more specific regions of the tissue. We also suggest that there might be additional, unidentified cadherin-like molecules in the retina.  相似文献   

8.
We have characterized the antigen recognized by mab10, a monoclonal antibody that has been shown to modify outgrowth of thalamic and cortical axons in vitro, and investigated the influence of this antibody on axonal growth in the chicken retina in vivo. Immunopurification, peptide sequencing, and biochemical characterization proved the epitope recognized by mab10 to be polysialic acid (PSA), associated with the neural cell adhesion molecule (NCAM). Intravitreal injections of antibody-secreting hybridoma cells were combined with whole-mount studies using the fluorescent tracer 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI). Pathfinding at the optic fissure was affected, resulting in a failure of axons to exit into the nerve. Misprojections also occurred in more peripheral areas of the retina; however, axons eventually oriented toward the center. Similar projection errors were observed after enzymatic removal of PSA by injecting endoneuraminidase N (endo N). Quantitative measurements of the optic nerve diameter as well as the width of the optic fiber layer confirmed that many axons failed to leave the retina and grew back in the optic fiber layer of the retina. Our findings suggest that NCAM-linked PSA is involved in guiding ganglion cell axons in the retina and at the optic fissure.  相似文献   

9.
Rat retina structure was studied between embryonic day 14 and adult with antibodies specific for vimentin, glial fibrillary acidic protein (GFA) and the proteins of the neurofilament triplet. Vimentin could be detected in radial processes throughout the retina at all stages studied. These processes are believed to correspond, in the developing retina, to ventriculocytes, and in the mature retina to Müller cells. They could not normally be stained with any of the other intermediate filament antibodies employed here. We did find, however, that some older albino rats possessed GFA staining in addition to vimentin in these processes. Since we never saw such staining in the retinae of mature non-albino rats, and the retinae of older albino rats often showed signs of degeneration, we concluded that such GFA expression was most likely pathological. Neurofilament protein-positive processes were first detectable at embryonic day 15 1/2 in the inner regions of the retina, and corresponded to the axons of retinal ganglion cells. Such processes were equivalently displayed with antibodies to 68 K and 145 K protein, but were negative with 200 K protein. Some 68 K and 145 K positive fibers could also be decorated with vimentin antibody at this stage, though at later stages this was not the case. At later development stages more 68 K and 145 K neurofilament positive processes appeared, and after the first post-natal week progressively more of such processes became in addition 200 K positive, so that almost all neurofilament positive fibers in the adult stained for all three proteins. Such fibers, in the mature retina corresponded to 68 K and 145 K positive optic nerve fibers, and the processes of neurones in the inner plexiform layer. All fibers in the mature optic nerve fiber layer, but not all of those in the inner plexiform layer were stainable with 200 K antibodies. At 4 days post-natal we were able to detect 68 K and 145 K protein positive profiles in the outer regions of the developing retina, the prospective outer plexiform layer. Such profiles were always in addition vimentin positive, but negative for 200 K protein. During further development such profiles became ordered into a well defined layer and from about post-natal day 13 all of them began to acquire 200 K protein. They could be identified as the processes of horizontal cells. They continued to express vimentin in addition to the three triplet proteins in the adult, a so far unprecedented situation. We were able to detect neurofilament staining in the mature retina only in the above described regions, the inner and outer nuclear layer and the photoreceptor processes being completely free of staining. GFA was first detected in short processes adjacent to the inner limiting membrane which penetrated the optic nerve fiber layer. Such profiles were first detectable in the eye of the newborn animal, and were invariably identically stainable with vimentin at this age. These profiles could be stained with both vimentin and GFA at all later stages examined, although GFA staining became very much stronger than vimentin staining in some profiles in the adult. The results presented here are discussed in terms of development of the different retinal cell types.  相似文献   

10.
采用组织学方法观察了胭脂鱼(Myxocyprinus asiaticus) 眼的发生过程, 结果显示: 胭脂鱼眼的发育经历了眼原基形成期、眼囊形成期、视杯形成期、晶体板形成期、晶体囊形成期、角膜原基形成期、角膜上皮形成期、视网膜细胞增殖期、晶状体成熟期、眼色素形成期以及眼成型期等11个时期。视网膜发育最早, 起始于眼原基的形成, 直至眼成型期分化完成, 形成了厚度不一的8层细胞, 由内向外依次为神经纤维层、神经细胞层、内网层、内核层、外网层、外核层、视杆视锥层和色素上皮层, 且发育历时最长, 约264h。晶状体的发育在视网膜之后, 始于晶体板的形成, 于出膜前期成熟, 发育历时最短, 约74h。角膜发育最晚, 始于角膜原基的形成, 出膜1 d分化为透明的成熟角膜, 发育历时约96h。出膜4 d仔鱼眼色素沉积明显, 视网膜各层分化明显, 晶状体内部完全纤维化, 眼的形态结构基本发育完全。  相似文献   

11.
Tenascins are a family of extracellular matrix proteins that evolved in early chordates. There are four family members: tenascin-X, tenascin-R, tenascin-W, and tenascin-C. Tenascin-X associates with type I collagen, and its absence can cause Ehlers-Danlos Syndrome. In contrast, tenascin-R is concentrated in perineuronal nets. The expression of tenascin-C and tenascin-W is developmentally regulated, and both are expressed during disease (e.g., both are associated with cancer stroma and tumor blood vessels). In addition, tenascin-C is highly induced by infections and inflammation. Accordingly, the tenascin-C knockout mouse has a reduced inflammatory response. All tenascins have the potential to modify cell adhesion either directly or through interaction with fibronectin, and cell-tenascin interactions typically lead to increased cell motility. In the case of tenascin-C, there is a correlation between elevated expression and increased metastasis in several types of tumors.  相似文献   

12.
Di Cristo C  Delli Bovi P  Di Cosmo A 《Peptides》2003,24(10):1525-1532
As a part of continuous research on the neurobiology of the cephalopods in general, and the neuroendocrine control of reproduction in Octopus vulgaris in particular, the presence, the molecular analysis and the effect of FMRFamide on the screening-pigment migration in the visual system have been analysed. FMRFamide immunoreactive fibres are present in the outer plexiform layer of the retina as well as in the plexiform zone of the deep retina. These fibres presumably come from optic and olfactory lobes. We isolated an incomplete Octopus FMRFamide cDNA which encodes an amino terminal truncated precursor containing several FMRFamide-related peptides (FaRPs) showing a high degree of identity with the FaRPs encoded in the precursor of Sepia officinalis, except for the presence of an Rpamide related peptide, present only in cnidarians. Finally, stimulation of isolated retina demonstrated that the effect of this tetrapeptide, coupled with dopamine, is the induction of an extreme adaptation of the retina to the light condition. This situation de facto inhibits sexual maturation. Our results on the effect of FMRFamide on the retina confirm the suggested hypothesis that this peptide plays an inhibitory role on the activity of optic gland.  相似文献   

13.
为了解大熊猫眼睛的胚后发育状况,对64小时龄和35天龄大熊猫视网膜的组织结构进行了观察,发现胚后64小时龄大熊猫视网膜的分化程度很低,色素层已形成,但视泡腔明显;神经层由外面数层长梭形,内面数层圆形细胞核及无核的纤维层构成。  相似文献   

14.
Summary The distribution of gelsolin, a calcium-dependent actin-severing and capping protein, in the retina of the developing and adult rabbit was studied. Gelsolin immunoreactivity was found in the photoreceptors and ganglion cells, where it may have a role in neuronal morphogenesis. Only the inner segment of the photoreceptors retained a high gelsolin content in the adult retina, perhaps because the attached outer segment is continuously renewed throughout life. Gelsolin, which is a major component of the rabbit brain oligodendrocytes, was also found in the myelin of the medullary ray region of the rabbit retina. Müller cells in all regions of the rabbit retina also contain gelsolin from early in development to adulthood. Since one of the functions of these cells is to ensheath neuronal elements in the inner plexiform and optic fiber layers, we suggest that gelsolin may play the same role in Müller cells as it does in oligodendrocytes, i.e., sheath formation via its calcium-dependent action on the actin microfilament networks.  相似文献   

15.
The tenascins are a growing family of extracellular matrix proteins of typical multidomain structure. The prototype to be discovered was tenascin-C. It shows a highly regulated expression pattern during embryonic development and is often transiently associated with morphogenetic tissue interactions during organogenesis. In the adult organism reexpression of tenascin-C occurs in tumors and many other pathological conditions. Tenascin-C expression can be regulated by many different growth factors and hormones. Furthermore, mechanical strain exerted by fibroblasts seems to induce the expression of tenascin-C. This could represent a mechanism of translating mechanical forces into protein patterns, a step of potential relevance in the organization of embryogenesis. Tenascin-C as well as tenascin-R are believed to counteract the cell adhesion and spreading activity of fibronectin, thereby facilitating cell movement.  相似文献   

16.
The localization, isoform pattern, and mRNA distribution of the synapse-organizing molecule agrin was investigated in the developing avian retina. Injection of anti-agrin Fab fragments into the vitreous humor of chick eyes of embryonic days 3 to 20, a procedure that labels only extracellular agrin, reveals staining in the inner and outer plexiform layers before, during, and after the period of synapse formation. The labeling in these layers changes from a diffuse to a punctate pattern at the time when synapses form. At all stages investigated, the inner limiting membrane (a basal lamina that separates vitreous from neural retina) is intensely labeled, as are the axonal processes of retinal ganglion cells in the optic fiber layer and in the optic nerve, although the staining intensity declines after embryonic day 10 in both retina and optic nerve. In culture, axons of retinal ganglion cells also express agrin-like immunoreactivity on their surfaces. Polymerase chain reaction analysis reveals that several different agrin isoforms are expressed in the developing neural retina. In situ hybridization studies show that agrin isoforms are expressed in the ganglion cell and inner nuclear layers, correlating well with the staining for agrin protein in the optic fiber and plexiform layers. The expression of mRNA coding for several agrin isoforms and the presence of extracellular agrin in the synapse-containing layers during the period of synapse formation is consistent with the idea that agrin isoforms might play a role during synapse formation in the central nervous system. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The relationship between structure of tenascin-C (Tn-C), a multi-domain extracellular matrix protein, and its stimulation of chondrogenesis was examined using recombinant Tn-C isoforms (full length or with specific domains deleted) as substrata for undifferentiated chicken mesenchymal cells. Of the Tn-C variants tested, only Tn-C lacking the fibrinogen-like domain or Tn-C comprised solely of fibrinogen-like domains failed to stimulate chondrogenesis. The ability of variants to stimulate chondrogenesis was not dependent on their ability to support adhesion or stimulate proliferation. These results demonstrate that the fibrinogen-like domain of Tn-C is necessary but not sufficient for induction of chondrogenesis.  相似文献   

18.
Target cells of vitamin D in the vertebrate retina   总被引:1,自引:0,他引:1  
Using PAP technique, cellular localization of vitamin D-dependent calcium-binding protein (D-CaBP) was investigated in vertebrate retina with monospecific antisera against chick duodenal D-CaBP. In the chick retina, the receptor cells were positive. In the inner nuclear layer, horizontal cells and some bipolar cells were also positive. Some amacrine cells as well as different levels of the inner plexiform layer were also positive for D-CaBP. A few interspersed ganglion cells were positive but their axons forming the optic tract were negative. Müller's cells were negative. In 1-day-old chicks and 4-week-old rachitic chicks there was paucity and absence, respectively, of D-CaBP staining in horizontal cells. In the mouse, rat, and rabbit the receptors had only trace amounts of reaction product in their outer segment and pedicle. Horizontal cells were densely positive throughout their cellular body and processes. Some amacrine cells in the inner nuclear layer were positive. In the mouse and rat three horizontal levels of the outer plexiform layer were very prominent because of their dense staining for D-CaBP. Many ganglion cells were also positive along with their axons forming the optic nerve. In the rabbit, no positive layers were seen in the inner plexiform layer, and ganglion cells with their fibers were negative. In the frog retina there were smaller amounts of D-CaBP in the receptor cells and horizontal cells than that of the chick retina. Also, the fibers of the ganglionic cells were positive for D-CaBP. In all species studied, some amacrine cells were stained for D-CaBP. Because of its possible roles in membrane calcium transport and intracellular Ca++ regulation, it has perhaps similar functions in these positive cells. The synthesis of D-CaBP is dependent upon vitamin D. These positive cells are thus target cells of vitamin D.  相似文献   

19.
Changes in the distribution of 1P1-antigen in the developing chick retina have been examined by indirect immunofiuorescence staining technique using the novel monoclonal antibody (MAb) 1P1. Expression of the 1P1 antigen was found to be regulated in radial as well as in tangential dimension of the retina, being preferentially or exclusively located in the inner and outer plexiform layers of the neural retina depending on the stages of development. With the onset of the formation of the inner plexiform layer 1P1 antigen becomes expressed in the retina. With progressing differentiation of the inner plexiform layer 1P1 immunofiuorescence revealed 2 subbands at E9 and 6 subbands at E18. At postnatal stages (after P3) immunoreactivity was reduced in an inside-outside sequence leading to the complete absence of the 1P1 antigen in adulthood. 1P1 antigen expression in the outer plexiform layer was also subject to developmental regulation. The spatio-temporal pattern of 1P1 antigen expression was correlated with the time course of histological differentiation of chick retina, namely the synapse rich plexiform layers. Whether the 1P1 antigen was functionally involved in dendrite extension and synapse formation was discussed.  相似文献   

20.
Summary Neurons displaying FMRFamide(Phe-Met-Arg-Phe-NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号