共查询到20条相似文献,搜索用时 15 毫秒
1.
Multicenter evaluation of reverse line blot assay for detection of drug resistance in Mycobacterium tuberculosis clinical isolates 总被引:7,自引:0,他引:7
Mokrousov I Bhanu NV Suffys PN Kadival GV Yap SF Cho SN Jordaan AM Narvskaya O Singh UB Gomes HM Lee H Kulkarni SP Lim KC Khan BK van Soolingen D Victor TC Schouls LM 《Journal of microbiological methods》2004,57(3):323-335
A multicenter study was conducted with the objective to evaluate a reverse line blot (RLB) assay to detect resistance to rifampin (RIF), isoniazid (INH), streptomycin (STR), and ethambutol (EMB) in clinical isolates of Mycobacterium tuberculosis. Oligonucleotides specific for wild type and mutant (drug resistance linked) alleles of the selected codons in the genes rpoB, inhA, ahpC, rpsL, rrs, embB, were immobilized on a nylon membrane. The RLB assay conditions were optimized following analysis of DNA samples with known sequences of the targeted genes. For validation of the method at different geographical locations, the membranes were sent to seven laboratories in six countries representing the regions with high burdens of multudrug-resistant tuberculosis. The reproducibility of the assay for detection of rpoB genotypes was initially evaluated on a blinded set of twenty reference DNA samples with known allele types and overall concordant results were obtained. Further mutation analysis was performed by each laboratory on the local strains. Upon RLB analysis of 315 clinical isolates from different countries, 132 (85.2%) of 155 RIF-resistant and 28 (51.0%) of 55 EMB-resistant isolates were correctly identified, showing applicability of the assay when targeting the rpoB hot-spot region and embB306. Mutations in the inhA and ahpC promoter regions, conferring resistance to INH, were successfully identified in respectively 16.9% and 13.2% of INH-resistant strains. Likewise, mutations in rrs513 and rpsL88 that confer resistance to STR were identified in respectively 15.1% and 10.7% of STR-resistant strains. It should be mentioned that mutation analysis of the above targets usually requires rather costly DNA sequencing to which the proposed RLB assay presents rapid and inexpensive alternative. Furthermore, the proposed method requires the same simple equipment as that used for spoligotyping and permits simultaneous analysis of up to 40 samples. This technique is a first attempt to combine different targets in a single assay for prediction of antituberculosis drugs resistance. It is open to further development as it allows easy incorporation of new probes for detection of mutations in other genes associated with resistance to second-line (e.g., fluoroquinolones) and new antituberculosis compounds. 相似文献
2.
The microplate nitrate reductase assay (MNRA) and the rezasurin microtitre assay (REMA) were used for the susceptibility testing of 73 clinical isolates and the results were compared with those that were obtained using the Bactec 460 TB and Bactec MGIT 960 systems. The REMA and the MNRA were performed in 96-well plates. For the REMA, the concentrations of isoniazid (INH) and rifampicin (RIF) ranged from 1.0-0.01 μg/mL and 2.0-0.03 μg/mL, respectively. For the MNRA, the INH concentration was between 1.0-0.03 μg/mL and the RIF concentration was between 2.0-0.06 μg/mL. For the MNRA, the sensitivity, specificity, positive predictive value, negative predictive value and INH/RIF agreement were 100/95.6, 97.6/100, 96.8/100, 100/98 and 98.6/98.6, respectively, and for the REMA, they were 100/91.3, 90.4/100, 88.5/100, 100/96.1 and 94.5/97.2, respectively. Our data suggest that these two rapid, low-cost methods may be inexpensive, alternative assays for the rapid detection of multidrug resistant tuberculosis in low-income countries. 相似文献
3.
Introduction. The performance of a drug susceptibility test may change when moving from the research stage to implementation on a population level in actual public health practice. Objective. The performance of a rapid drug susceptibility test was described for detecting multidrug-resistant Mycobacterium tuberculosis when implemented in the routine workflow of a low-resource reference laboratory. Materials and methods. A prospective study was done comparing the performance of the nitrate reductase assay with the conventional proportion method for rifampicin and isoniazid on 364 isolates were obtained from multidrug-resistant tuberculosis risk patients referred from diffrent Colombian laboratories. Results. When compared with the proportion method, the nitrate reductase assay sensitivity was 86.8% and 84.9% for rifampicin and isoniazid, respectively, whereas nitrate reductase assay specificity was 100% for isoniazid and rifampicin. Nitrate reductase assay sensitivity was significantly higher when the age of isolate was less than 70 days. A sensitivity of 94.4% dropped to 78.1% for rifampicin resistance for fresh and old isolates, respectively (Fisher exact test, p=0.05). For isoniazid resistance using fresh and old isolates, 94.7% vs.74.3% sensitivities, were achieved (chi square test, p=0.03). The proportion of nitrate reductase assay ambiguous results was significantly higher in multidrug-resistant than in non-multidrug-resistant isolates (17.6% vs. 4.0%, chi square test, p<0.005). Conclusions. The nitrate reductase assay demonstrated provided reliable results for antibiotic resistance. However, using old cultures leds to a higher proportion of false sensitive results; furthermore, the nitrate reductase assay capability to detect multidrug-resistant tuberculosis decreased due to a higher proportion of non-interpretable results. 相似文献
4.
Coban AY Cayci YT Deveci A Akgunes A Uzun M Durupinar B 《Memórias do Instituto Oswaldo Cruz》2011,106(3):378-380
The susceptibility of 49 Mycobacterium tuberculosis clinical isolates to isoniazid (INH) and rifampisin (RIF) (28 multi-drug resistant-tuberculosis samples) was determined by a nitrate reductase assay (NRA) on blood agar. Agreement between the NRA and other testing methods was found to be 93.8% for both INH and RIF. The sensitivity, specificity, positive predictive value and negative predictive value for INH were 92.8%, 94.2%, 86.6% and 97%, respectively. The sensitivity, specificity, positive predictive value and negative predictive value for RIF were 90.4%, 96.4%, 95% and 93.1%. In conclusion, we show here that blood agar can be used effectively for the NRA test. 相似文献
5.
Microbiological method of direct accelerated assessment of resistance of Mycobacterium tuberculosis to rifampicin and isoniazide was developed which is able to detect multidrug resistant M. tuberculosis 10-21 days after obtaining of sputum--4-5 times faster compared with the method of absolute concentrations. Efficacy of the method was 0.93 and 0.96 during assessment of susceptibility to rifampicin and isoniazide respectively. 相似文献
6.
Juan Carlos Palomino 《FEMS immunology and medical microbiology》2009,56(2):103-111
This minireview presents recent developments in molecular methods for the diagnosis of tuberculosis, including detection, identification and determination of drug resistance of Mycobacterium tuberculosis . Tuberculosis remains one of the major causes of global death from a single infectious agent. This situation is worsened by the HIV/AIDS pandemic because one-third of HIV/AIDS patients are coinfected with M. tuberculosis . Also of great concern is the emergence of drug-resistant tuberculosis because there are almost no treatment options available for patients affected by highly resistant strains of M. tuberculosis . Advances in molecular biology techniques and a better knowledge of the molecular mechanisms of drug resistance have provided new tools for the rapid diagnosis of tuberculosis. Several nucleic acid amplification technologies have been developed and evaluated. New molecular approaches are being introduced continuously. This minireview will also comment on the future perspectives for the molecular diagnosis of tuberculosis and the feasibility for the implementation of these newer techniques in the clinical diagnostic laboratory. 相似文献
7.
Fonseca Lde S Vieira GB Sobral LF Ribeiro EO Marsico AG 《Memórias do Instituto Oswaldo Cruz》2012,107(1):142-144
The performance of the nitrate reductase assay (NRA) was compared with the proportion method (PM) on Lowenstein-Jensen medium and the BACTEC MGIT960 assay under routine conditions using 160 clinical isolates of Mycobacterium tuberculosis with a high proportion of resistant strains. The mean time to obtain results was 8.8 days and the overall agreements between NRA and PM and NRA and M960 were 95% and 94%, respectively. NRA was easy to perform and represents a useful tool for the rapid screening of drug-resistant M. tuberculosis strains in low-resource countries. 相似文献
8.
Anin situ method, derived from anin vivo method, was used to determine nitrate reductase activity (NRA) in:i) excised barley and corn shoots and excised soybean leaves during a N-depletion experiment and; ii) roots and shoots of N-depleted barley and corn seedlings during induction of nitrate, reductase (NR). Nitrate reduction, calculated from thesein situ RNA measurements, was compared with estimates of each organ's nitrate reduction in light aerobic conditions from NO 3 − consumption and a15N model (Gojonet al., 1986b). Thein situ RNA of roots strongly underestimated their15NO 3 − reduction. In contrast, in barley and corn shoots and in the first trifoliolate leaves from 26-day-old, soybean, thein situ NRA assay gave a fair approximation of the true NO 3 − reduction rate (relative differences ranging from −14 to +32%). In young soybean leaves (from 20-day-old plants), however, thein situ NRA strongly underestimated the actual NO 3 − reduction. The physiological significance of thein situ NRA assay in shoots and roots, and its value for field studies are discussed from these results. 相似文献
9.
A real-time PCR assay for detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates 总被引:3,自引:0,他引:3
Rindi L Bianchi L Tortoli E Lari N Bonanni D Garzelli C 《Journal of microbiological methods》2003,55(3):797-800
A real-time PCR genotypic assay was developed for the detection of isoniazid (INH) resistance in Mycobacterium tuberculosis. The assay detects mutations C(-15)T and, possibly, G(-24)T in the regulatory region of the inhA gene and proved as sensitive and specific as nucleotide sequencing in all the clinical isolates tested. Our assays mapped the mutations efficiently in 10 out of 35 resistant isolates, thereby covering 29% of all resistant strains. 相似文献
10.
Yisuo Sun Shufen Li Lin Zhou Lin Zhou Qiu Zhong Shisong Fang Tao Chen Lijun Bi Wai-Kin Mat Cunyou Zhao Hong Xue 《Applied microbiology and biotechnology》2014,98(9):4095-4105
Rapid detection of drug-resistant Mycobacterium tuberculosis is critical to the effective early treatment and prevention of the transmission of tuberculosis. However, conventional drug susceptibility tests for M. tuberculosis require up to several weeks. In the present study, the One Label Extension genotyping method was adapted for rapid detection of drug resistance-associated sequence variations in six genes of M. tuberculosis, viz. rpoB, rpsL, rrs, embB, katG, or inhA. The method utilizes polymerase chain reaction amplified fragments of the drug resistant genes as reaction templates, and proceeds with template-directed primer extension incorporating a fluorescence-labeled nucleotide, which is then measured by fluorescence polarization. A total of 121 M. tuberculosis isolates from clinical sputum specimens were examined by this genotyping method and verified by direct sequencing of polymerase chain reaction amplicons harboring previously reported mutational sites associated with M. tuberculosis drug resistance. Based on phenotyping results obtained from microbiology-based drug susceptibility tests, the sensitivity, specificity, and test efficiency estimated for One Label Extension assays were respectively 83.9 %, 95.5 %, and 92.4 % with ropB in rifampin resistance, 67.3 %, 97.1 %, and 84.3 % with rpsL and rrs in streptomycin resistance, 60.0 %, 96.0 %, and 91.4 % with embB in ethambutol resistance, 68.4 %, 94.9 %, and 86.3 % with inhA and katG in isoniazid resistance, and 74.1 %, 98.9 %, and 93.2 % in multiple drug resistance defined as resistance to at least both isoniazid and rifampin. In conclusion, examination of clinical sputum specimens by One Label Extension based genotyping provides a valid method for the rapid molecular detection of drug-resistant M. tuberculosis. 相似文献
11.
Michelon CT Rosso F Schmid KB Sperhacke RD Oliveira MM Kritski AL Rezende Jr L Costa ER Ribeiro AW Verza M Cafrune PI Silva MS Kuhleis D Zaha A Rossetti ML 《Memórias do Instituto Oswaldo Cruz》2011,106(2):194-199
Direct smear examination using Ziehl-Neelsen staining for pulmonary tuberculosis (PTB) diagnosis is inexpensive and easy to use, but has the major limitation of low sensitivity. Rapid molecular methods are becoming more widely available in centralized laboratories, but they depend on timely reporting of results and strict quality assurance obtainable only from costly commercial kits available in high burden nations. This study describes a pre-commercial colorimetric method, Detect-TB, for detecting Mycobacterium tuberculosis DNA in which an oligonucleotide probe is fixed onto wells of microwell plates and hybridized with biotinylated polymerase chain reaction amplification products derived from clinical samples. The probe is capable of hybridising with the IS6110 insertion element and was used to specifically recognise the M. tuberculosis complex. When combined with an improved silica-based DNA extraction method, the sensitivity of the test was 50 colony-forming units of the M. tuberculosis reference strain H37Rv. The results that were in agreement with reference detection methods were observed in 95.2% (453/476) of samples included in the analysis. Sensitivity and specificity for 301 induced sputum samples and 175 spontaneous sputum samples were 85% and 98%, and 94% and 100%, respectively. This colorimetric method showed similar specificity to that described for commercially available kits and may provide an important contribution for PTB diagnosis. 相似文献
12.
Cheng X Zhang J Yang L Xu X Liu J Yu W Su M Hao X 《Journal of microbiological methods》2007,70(2):301-305
Prompt detection of drug resistance in Mycobacterium tuberculosis is essential for effective control of tuberculosis (TB). We developed a Multi-PCR-SSCP method that detects more than 80% commonly observed isoniazid (INH) and rifampin (RIF) resistance M. tuberculosis in a single assay. The usefulness of the newly developed method was evaluated with 116 clinical isolates of M. tuberculosis. Distinct SSCP patterns were observed for different mutations and the correlation between Multi-PCR-SSCP results and DNA sequencing data was strong. Using the culture-based phenotypic drug susceptibility testing as a reference, the sensitivity of the newly developed Multi-PCR-SSCP assay was determined to be 80% and 81.8% for INH and RIF, respectively. The specificity of the assay was 100% and 92%, for INH and RIF, respectively. Multi-PCR-SSCP provides a rapid and potentially more cost-effective method of detecting multidrug-resistant TB. 相似文献
13.
The most common method for detection of drug resistant (DR) TB in resource-limited settings (RLSs) is indirect susceptibility testing on Lowenstein-Jensen medium (LJ) which is very time consuming with results available only after 2-3 months. Effective therapy of DR TB is therefore markedly delayed and patients can transmit resistant strains. Rapid and accurate tests suitable for RLSs in the diagnosis of DR TB are thus highly needed. In this study we compared two direct techniques--Nitrate Reductase Assay (NRA) and Microscopic Observation Drug Susceptibility (MODS) for rapid detection of MDR-TB in a high burden RLS. The sensitivity, specificity, and proportion of interpretable results were studied. Smear positive sputum was collected from 245 consecutive re-treatment TB patients attending a TB clinic in Kampala, Uganda. Samples were processed at the national reference laboratory and tested for susceptibility to rifampicin and isoniazid with direct NRA, direct MODS and the indirect LJ proportion method as reference. A total of 229 specimens were confirmed as M. tuberculosis, of these interpretable results were obtained in 217 (95%) with either the NRA or MODS. Sensitivity, specificity and kappa agreement for MDR-TB diagnosis was 97%, 98% and 0.93 with the NRA; and 87%, 95% and 0.78 with the MODS, respectively. The median time to results was 10, 7 and 64 days with NRA, MODS and the reference technique, respectively. The cost of laboratory supplies per sample was low, around 5 USD, for the rapid tests. The direct NRA and MODS offered rapid detection of resistance almost eight weeks earlier than with the reference method. In the study settings, the direct NRA was highly sensitive and specific. We consider it to have a strong potential for timely detection of MDR-TB in RLS. 相似文献
14.
A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis
下载免费PDF全文

The recent publication of the genome sequence of Mycobacterium bovis showed >99.95% identity to M. tuberculosis. No genes unique to M. bovis were found. Instead numerous single-nucleotide polymorphisms (SNPs) were identified. This has led to the hypothesis that differential gene expression due to SNPs might explain the differences between the human and bovine tubercle bacilli. One phenotypic distinction between M. tuberculosis and M. bovis is nitrate reduction, which not only is an essential diagnostic tool but also contributes to mycobacterial pathogenesis. We previously showed that narGHJI encodes a nitrate reductase in both M. tuberculosis and M. bovis and that NarGHJI-mediated nitrate reductase activity was substantially higher in the human tubercle bacillus. In the present study we used a genetic approach to demonstrate that an SNP within the promoter of the nitrate reductase gene cluster narGHJI is responsible for the different nitrate reductase activity of M. tuberculosis and M. bovis. This is the first example of an SNP that leads to differential gene expression between the human and bovine tubercle bacilli. 相似文献
15.
da Silva PE Von Groll A Martin A Palomino JC 《FEMS immunology and medical microbiology》2011,63(1):1-9
Tuberculosis remains an important global public health problem, with an estimated prevalence of 14 million individuals with tuberculosis worldwide in 2007. Because antibiotic treatment is one of the main tools for tuberculosis control, knowledge of Mycobacterium tuberculosis drug resistance is an important component for the disease control strategy. Although several gene mutations in specific loci of the M. tuberculosis genome have been reported as the basis for drug resistance, additional resistance mechanisms are now believed to exist. Efflux is a ubiquitous mechanism responsible for intrinsic and acquired drug resistance in prokaryotic and eukaryotic cells. Mycobacterium tuberculosis presents one of the largest numbers of putative drug efflux pumps compared with its genome size. Bioinformatics as well as direct and indirect evidence have established relationships among drug efflux with intrinsic or acquired resistance in M. tuberculosis. This minireview describes the current knowledge on drug efflux in M. tuberculosis. 相似文献
16.
Sequencing of serial isolates of extensively drug-resistant tuberculosis highlights how drug resistance develops within a single patient and reveals unexpected levels of pathogen diversity.Tuberculosis (TB) remains a crucial public health problem, with increasing drug resistance posing a challenge to current control efforts. Treatment regimens for drug-susceptible TB are onerous, requiring a minimum of six months of treatment with four antitubercular drugs. There are patients who develop multi-drug-resistant (MDR), extensively drug-resistant (XDR) and totally drug-resistant (TDR) forms, which are successively more difficult to treat. In these circumstances, treatment regimens involve the use of a larger number of less-effective drugs, which have a narrower therapeutic margin.In many bacteria, drug-resistance determinants are carried on mobile genetic elements. However, in Mycobacterium tuberculosis (Mtb), drug resistance is exclusively associated with point mutations and chromosomal rearrangements. Poor or intermittent therapy has long been thought to be the major explanation for drug resistance, and it is believed that drug-resistant strains develop through the sequential fixation of a small set of mutations, such that the pathogen samples only a small proportion of possible evolutionary paths [1].The application of whole-genome sequencing (WGS) has revealed previously underappreciated levels of genetic diversity within circulating Mtb populations, and the implications of this diversity for transmission and disease outcomes are increasingly being acknowledged. By contrast, mycobacterial heterogeneity within a single host, and any concomitant biological or clinical significance, has been explored but seldom documented.In a study published in this issue of Genome Biology, Eldholm and colleagues apply WGS to investigate the evolution from drug-sensitive to XDR-TB within a single patient [2]. This adds to an emerging body of evidence that suggests that intra-host microbial diversity is substantial and might have significant consequences when inferring transmission. There are few instances, if any, in the literature where this has been investigated in such detail. 相似文献
17.
18.
Bockstahler LE Li Z Nguyen NY Van Houten KA Brennan MJ Langone JJ Morris SL 《BioTechniques》2002,32(3):508-10, 512, 514
The emergence of drug-resistant strains of Mycobacterium tuberculosis is a serious public health problem. Many of the specific gene mutations that cause drug resistance in M. tuberculosis are point mutations. We are developing a PCR-peptide nucleic acid (PNA)-based ELISA as a diagnostic method to recognize point mutations in genes associated with isoniazid and rifampin resistance in M. tuberculosis. Specific point mutation-containing sequences and wild-type sequences of cloned mycobacterial genes were PCR-amplified, denatured, and hybridized with PNA probes bound to microplate wells. Using 15-base PNA probes, we established the hybridization temperatures (50 degrees C-55 degrees C) and other experimental conditions suitable for detecting clinically relevant point mutations in the katG and rpoB genes. Hybridization of PCR-amplified sequences that contained these point mutations with complementary mutation-specific PNAs resulted in significant increases in ELISA response compared with hybridization using wild-type-specific PNAs. Conversely, PCR-amplified wild-type sequences hybridized much more efficiently with wild-type PNAs than with the mutation-specific PNAs. Using the M. tuberculosis cloned genes and PCR-PNA-ELISA format developed here, M. tuberculosis sequences containing point mutations associated with drug resistance can be identified in less than 24 h. 相似文献
19.
The Mycobacterium tuberculosis AhpC is similar to a family of bacterial and eukaryotic antioxidant proteins with alkylhydroperoxidase (Ahp) and thioredoxin-dependent peroxidase (TPx) activities. AhpC expression is associated with resistance to the front-line antitubercular drug isoniazid in the naturally resistant organisms E. coli and M. smegmatis. We identified several isoniazid-resistant M. tuberculosis isolates with ahpC promoter mutations resulting in AhpC overexpression. These strains were more resistant to cumene hydroperoxide than were wild-type strains. However, these strains were unchanged in their sensitivity to isoniazid, refuting a role for AhpC in detoxification of this drug. All the isoniazid-resistant, AhpC-overexpressing strains were also deficient in activity of the mycobacterial catalase-peroxidase KatG. KatG, the only known catalase in M. tuberculosis, is required for activation of isoniazid. We propose that compensatory ahpC promoter mutations are selected from KatG-deficient, isoniazid-resistant M. tuberculosis during infections, to mitigate the added burden imposed by organic peroxides on these strains. 相似文献