首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multicenter study was conducted with the objective to evaluate a reverse line blot (RLB) assay to detect resistance to rifampin (RIF), isoniazid (INH), streptomycin (STR), and ethambutol (EMB) in clinical isolates of Mycobacterium tuberculosis. Oligonucleotides specific for wild type and mutant (drug resistance linked) alleles of the selected codons in the genes rpoB, inhA, ahpC, rpsL, rrs, embB, were immobilized on a nylon membrane. The RLB assay conditions were optimized following analysis of DNA samples with known sequences of the targeted genes. For validation of the method at different geographical locations, the membranes were sent to seven laboratories in six countries representing the regions with high burdens of multudrug-resistant tuberculosis. The reproducibility of the assay for detection of rpoB genotypes was initially evaluated on a blinded set of twenty reference DNA samples with known allele types and overall concordant results were obtained. Further mutation analysis was performed by each laboratory on the local strains. Upon RLB analysis of 315 clinical isolates from different countries, 132 (85.2%) of 155 RIF-resistant and 28 (51.0%) of 55 EMB-resistant isolates were correctly identified, showing applicability of the assay when targeting the rpoB hot-spot region and embB306. Mutations in the inhA and ahpC promoter regions, conferring resistance to INH, were successfully identified in respectively 16.9% and 13.2% of INH-resistant strains. Likewise, mutations in rrs513 and rpsL88 that confer resistance to STR were identified in respectively 15.1% and 10.7% of STR-resistant strains. It should be mentioned that mutation analysis of the above targets usually requires rather costly DNA sequencing to which the proposed RLB assay presents rapid and inexpensive alternative. Furthermore, the proposed method requires the same simple equipment as that used for spoligotyping and permits simultaneous analysis of up to 40 samples. This technique is a first attempt to combine different targets in a single assay for prediction of antituberculosis drugs resistance. It is open to further development as it allows easy incorporation of new probes for detection of mutations in other genes associated with resistance to second-line (e.g., fluoroquinolones) and new antituberculosis compounds.  相似文献   

2.
The microplate nitrate reductase assay (MNRA) and the rezasurin microtitre assay (REMA) were used for the susceptibility testing of 73 clinical isolates and the results were compared with those that were obtained using the Bactec 460 TB and Bactec MGIT 960 systems. The REMA and the MNRA were performed in 96-well plates. For the REMA, the concentrations of isoniazid (INH) and rifampicin (RIF) ranged from 1.0-0.01 μg/mL and 2.0-0.03 μg/mL, respectively. For the MNRA, the INH concentration was between 1.0-0.03 μg/mL and the RIF concentration was between 2.0-0.06 μg/mL. For the MNRA, the sensitivity, specificity, positive predictive value, negative predictive value and INH/RIF agreement were 100/95.6, 97.6/100, 96.8/100, 100/98 and 98.6/98.6, respectively, and for the REMA, they were 100/91.3, 90.4/100, 88.5/100, 100/96.1 and 94.5/97.2, respectively. Our data suggest that these two rapid, low-cost methods may be inexpensive, alternative assays for the rapid detection of multidrug resistant tuberculosis in low-income countries.  相似文献   

3.
Introduction. The performance of a drug susceptibility test may change when moving from the research stage to implementation on a population level in actual public health practice. Objective. The performance of a rapid drug susceptibility test was described for detecting multidrug-resistant Mycobacterium tuberculosis when implemented in the routine workflow of a low-resource reference laboratory. Materials and methods. A prospective study was done comparing the performance of the nitrate reductase assay with the conventional proportion method for rifampicin and isoniazid on 364 isolates were obtained from multidrug-resistant tuberculosis risk patients referred from diffrent Colombian laboratories. Results. When compared with the proportion method, the nitrate reductase assay sensitivity was 86.8% and 84.9% for rifampicin and isoniazid, respectively, whereas nitrate reductase assay specificity was 100% for isoniazid and rifampicin. Nitrate reductase assay sensitivity was significantly higher when the age of isolate was less than 70 days. A sensitivity of 94.4% dropped to 78.1% for rifampicin resistance for fresh and old isolates, respectively (Fisher exact test, p=0.05). For isoniazid resistance using fresh and old isolates, 94.7% vs.74.3% sensitivities, were achieved (chi square test, p=0.03). The proportion of nitrate reductase assay ambiguous results was significantly higher in multidrug-resistant than in non-multidrug-resistant isolates (17.6% vs. 4.0%, chi square test, p<0.005). Conclusions. The nitrate reductase assay demonstrated provided reliable results for antibiotic resistance. However, using old cultures leds to a higher proportion of false sensitive results; furthermore, the nitrate reductase assay capability to detect multidrug-resistant tuberculosis decreased due to a higher proportion of non-interpretable results.  相似文献   

4.
The susceptibility of 49 Mycobacterium tuberculosis clinical isolates to isoniazid (INH) and rifampisin (RIF) (28 multi-drug resistant-tuberculosis samples) was determined by a nitrate reductase assay (NRA) on blood agar. Agreement between the NRA and other testing methods was found to be 93.8% for both INH and RIF. The sensitivity, specificity, positive predictive value and negative predictive value for INH were 92.8%, 94.2%, 86.6% and 97%, respectively. The sensitivity, specificity, positive predictive value and negative predictive value for RIF were 90.4%, 96.4%, 95% and 93.1%. In conclusion, we show here that blood agar can be used effectively for the NRA test.  相似文献   

5.
Microbiological method of direct accelerated assessment of resistance of Mycobacterium tuberculosis to rifampicin and isoniazide was developed which is able to detect multidrug resistant M. tuberculosis 10-21 days after obtaining of sputum--4-5 times faster compared with the method of absolute concentrations. Efficacy of the method was 0.93 and 0.96 during assessment of susceptibility to rifampicin and isoniazide respectively.  相似文献   

6.
This minireview presents recent developments in molecular methods for the diagnosis of tuberculosis, including detection, identification and determination of drug resistance of Mycobacterium tuberculosis . Tuberculosis remains one of the major causes of global death from a single infectious agent. This situation is worsened by the HIV/AIDS pandemic because one-third of HIV/AIDS patients are coinfected with M. tuberculosis . Also of great concern is the emergence of drug-resistant tuberculosis because there are almost no treatment options available for patients affected by highly resistant strains of M. tuberculosis . Advances in molecular biology techniques and a better knowledge of the molecular mechanisms of drug resistance have provided new tools for the rapid diagnosis of tuberculosis. Several nucleic acid amplification technologies have been developed and evaluated. New molecular approaches are being introduced continuously. This minireview will also comment on the future perspectives for the molecular diagnosis of tuberculosis and the feasibility for the implementation of these newer techniques in the clinical diagnostic laboratory.  相似文献   

7.
The usefulness of the nitrate-free in vivo nitrate reductase assay for the study of nitrate pools in wheat leaves was investigated. Leaf sections from 7-day-old wheat seedlings, exposed 24 h before harvest to 1.5, 3.0 or 5.0 m M KNO3 were used. After 2 to 4 h of incubation nitrite production ceased, reaching a plateau. The time required to reach the plateau and the level of the plateau increased with increasing endogenous nitrate content. At nitrite plateau the amount of nitrate left in the tissue was independent of the original nitrate content in the tissue. Addition of nitrate at plateau caused resumed nitrite production. It is concluded that nitrate was the limiting factor in nitrite production.
Oxygen inhibited nitrate reduction and stimulated further assimilation of nitrite. A considerable initial leakage of nitrate from tissue to the assay medium, followed by a slower continuous leakage, was observed throughout the incubation. N2-flushing or inclusion of Triton X-100 in the assay medium increased nitrite production by making more nitrate available for reduction. These treatments also increased the leakage of nitrate. At plateau levels the amount of nitrate left in the tissue was dependent on the oxygen tension in the assay medium. Under low oxygen tension nearly all nitrate in the tissue was available for reduction. Nitrite production at plateau is not a useful index for a metabolic nitrate pool and nitrate left in the tissue is not a useful index for a nitrate storage pool because both parameters are highly dependent on the oxygen tension in the assay medium. Further, in view of the considerable leakage, the nitrate-free in vivo nitrate reductase assay cannot be used to detect two separate nitrate pools in wheat leaves.  相似文献   

8.
The performance of the nitrate reductase assay (NRA) was compared with the proportion method (PM) on Lowenstein-Jensen medium and the BACTEC MGIT960 assay under routine conditions using 160 clinical isolates of Mycobacterium tuberculosis with a high proportion of resistant strains. The mean time to obtain results was 8.8 days and the overall agreements between NRA and PM and NRA and M960 were 95% and 94%, respectively. NRA was easy to perform and represents a useful tool for the rapid screening of drug-resistant M. tuberculosis strains in low-resource countries.  相似文献   

9.
A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and − 8 and − 15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997–2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.  相似文献   

10.
Anin situ method, derived from anin vivo method, was used to determine nitrate reductase activity (NRA) in:i) excised barley and corn shoots and excised soybean leaves during a N-depletion experiment and; ii) roots and shoots of N-depleted barley and corn seedlings during induction of nitrate, reductase (NR). Nitrate reduction, calculated from thesein situ RNA measurements, was compared with estimates of each organ's nitrate reduction in light aerobic conditions from NO 3 consumption and a15N model (Gojonet al., 1986b). Thein situ RNA of roots strongly underestimated their15NO 3 reduction. In contrast, in barley and corn shoots and in the first trifoliolate leaves from 26-day-old, soybean, thein situ NRA assay gave a fair approximation of the true NO 3 reduction rate (relative differences ranging from −14 to +32%). In young soybean leaves (from 20-day-old plants), however, thein situ NRA strongly underestimated the actual NO 3 reduction. The physiological significance of thein situ NRA assay in shoots and roots, and its value for field studies are discussed from these results.  相似文献   

11.
A real-time PCR genotypic assay was developed for the detection of isoniazid (INH) resistance in Mycobacterium tuberculosis. The assay detects mutations C(-15)T and, possibly, G(-24)T in the regulatory region of the inhA gene and proved as sensitive and specific as nucleotide sequencing in all the clinical isolates tested. Our assays mapped the mutations efficiently in 10 out of 35 resistant isolates, thereby covering 29% of all resistant strains.  相似文献   

12.
Rapid detection of drug-resistant Mycobacterium tuberculosis is critical to the effective early treatment and prevention of the transmission of tuberculosis. However, conventional drug susceptibility tests for M. tuberculosis require up to several weeks. In the present study, the One Label Extension genotyping method was adapted for rapid detection of drug resistance-associated sequence variations in six genes of M. tuberculosis, viz. rpoB, rpsL, rrs, embB, katG, or inhA. The method utilizes polymerase chain reaction amplified fragments of the drug resistant genes as reaction templates, and proceeds with template-directed primer extension incorporating a fluorescence-labeled nucleotide, which is then measured by fluorescence polarization. A total of 121 M. tuberculosis isolates from clinical sputum specimens were examined by this genotyping method and verified by direct sequencing of polymerase chain reaction amplicons harboring previously reported mutational sites associated with M. tuberculosis drug resistance. Based on phenotyping results obtained from microbiology-based drug susceptibility tests, the sensitivity, specificity, and test efficiency estimated for One Label Extension assays were respectively 83.9 %, 95.5 %, and 92.4 % with ropB in rifampin resistance, 67.3 %, 97.1 %, and 84.3 % with rpsL and rrs in streptomycin resistance, 60.0 %, 96.0 %, and 91.4 % with embB in ethambutol resistance, 68.4 %, 94.9 %, and 86.3 % with inhA and katG in isoniazid resistance, and 74.1 %, 98.9 %, and 93.2 % in multiple drug resistance defined as resistance to at least both isoniazid and rifampin. In conclusion, examination of clinical sputum specimens by One Label Extension based genotyping provides a valid method for the rapid molecular detection of drug-resistant M. tuberculosis.  相似文献   

13.
Direct smear examination using Ziehl-Neelsen staining for pulmonary tuberculosis (PTB) diagnosis is inexpensive and easy to use, but has the major limitation of low sensitivity. Rapid molecular methods are becoming more widely available in centralized laboratories, but they depend on timely reporting of results and strict quality assurance obtainable only from costly commercial kits available in high burden nations. This study describes a pre-commercial colorimetric method, Detect-TB, for detecting Mycobacterium tuberculosis DNA in which an oligonucleotide probe is fixed onto wells of microwell plates and hybridized with biotinylated polymerase chain reaction amplification products derived from clinical samples. The probe is capable of hybridising with the IS6110 insertion element and was used to specifically recognise the M. tuberculosis complex. When combined with an improved silica-based DNA extraction method, the sensitivity of the test was 50 colony-forming units of the M. tuberculosis reference strain H37Rv. The results that were in agreement with reference detection methods were observed in 95.2% (453/476) of samples included in the analysis. Sensitivity and specificity for 301 induced sputum samples and 175 spontaneous sputum samples were 85% and 98%, and 94% and 100%, respectively. This colorimetric method showed similar specificity to that described for commercially available kits and may provide an important contribution for PTB diagnosis.  相似文献   

14.
The most common method for detection of drug resistant (DR) TB in resource-limited settings (RLSs) is indirect susceptibility testing on Lowenstein-Jensen medium (LJ) which is very time consuming with results available only after 2-3 months. Effective therapy of DR TB is therefore markedly delayed and patients can transmit resistant strains. Rapid and accurate tests suitable for RLSs in the diagnosis of DR TB are thus highly needed. In this study we compared two direct techniques--Nitrate Reductase Assay (NRA) and Microscopic Observation Drug Susceptibility (MODS) for rapid detection of MDR-TB in a high burden RLS. The sensitivity, specificity, and proportion of interpretable results were studied. Smear positive sputum was collected from 245 consecutive re-treatment TB patients attending a TB clinic in Kampala, Uganda. Samples were processed at the national reference laboratory and tested for susceptibility to rifampicin and isoniazid with direct NRA, direct MODS and the indirect LJ proportion method as reference. A total of 229 specimens were confirmed as M. tuberculosis, of these interpretable results were obtained in 217 (95%) with either the NRA or MODS. Sensitivity, specificity and kappa agreement for MDR-TB diagnosis was 97%, 98% and 0.93 with the NRA; and 87%, 95% and 0.78 with the MODS, respectively. The median time to results was 10, 7 and 64 days with NRA, MODS and the reference technique, respectively. The cost of laboratory supplies per sample was low, around 5 USD, for the rapid tests. The direct NRA and MODS offered rapid detection of resistance almost eight weeks earlier than with the reference method. In the study settings, the direct NRA was highly sensitive and specific. We consider it to have a strong potential for timely detection of MDR-TB in RLS.  相似文献   

15.
Prompt detection of drug resistance in Mycobacterium tuberculosis is essential for effective control of tuberculosis (TB). We developed a Multi-PCR-SSCP method that detects more than 80% commonly observed isoniazid (INH) and rifampin (RIF) resistance M. tuberculosis in a single assay. The usefulness of the newly developed method was evaluated with 116 clinical isolates of M. tuberculosis. Distinct SSCP patterns were observed for different mutations and the correlation between Multi-PCR-SSCP results and DNA sequencing data was strong. Using the culture-based phenotypic drug susceptibility testing as a reference, the sensitivity of the newly developed Multi-PCR-SSCP assay was determined to be 80% and 81.8% for INH and RIF, respectively. The specificity of the assay was 100% and 92%, for INH and RIF, respectively. Multi-PCR-SSCP provides a rapid and potentially more cost-effective method of detecting multidrug-resistant TB.  相似文献   

16.
The recent publication of the genome sequence of Mycobacterium bovis showed >99.95% identity to M. tuberculosis. No genes unique to M. bovis were found. Instead numerous single-nucleotide polymorphisms (SNPs) were identified. This has led to the hypothesis that differential gene expression due to SNPs might explain the differences between the human and bovine tubercle bacilli. One phenotypic distinction between M. tuberculosis and M. bovis is nitrate reduction, which not only is an essential diagnostic tool but also contributes to mycobacterial pathogenesis. We previously showed that narGHJI encodes a nitrate reductase in both M. tuberculosis and M. bovis and that NarGHJI-mediated nitrate reductase activity was substantially higher in the human tubercle bacillus. In the present study we used a genetic approach to demonstrate that an SNP within the promoter of the nitrate reductase gene cluster narGHJI is responsible for the different nitrate reductase activity of M. tuberculosis and M. bovis. This is the first example of an SNP that leads to differential gene expression between the human and bovine tubercle bacilli.  相似文献   

17.
Tuberculosis remains an important global public health problem, with an estimated prevalence of 14 million individuals with tuberculosis worldwide in 2007. Because antibiotic treatment is one of the main tools for tuberculosis control, knowledge of Mycobacterium tuberculosis drug resistance is an important component for the disease control strategy. Although several gene mutations in specific loci of the M. tuberculosis genome have been reported as the basis for drug resistance, additional resistance mechanisms are now believed to exist. Efflux is a ubiquitous mechanism responsible for intrinsic and acquired drug resistance in prokaryotic and eukaryotic cells. Mycobacterium tuberculosis presents one of the largest numbers of putative drug efflux pumps compared with its genome size. Bioinformatics as well as direct and indirect evidence have established relationships among drug efflux with intrinsic or acquired resistance in M. tuberculosis. This minireview describes the current knowledge on drug efflux in M. tuberculosis.  相似文献   

18.
Sequencing of serial isolates of extensively drug-resistant tuberculosis highlights how drug resistance develops within a single patient and reveals unexpected levels of pathogen diversity.Tuberculosis (TB) remains a crucial public health problem, with increasing drug resistance posing a challenge to current control efforts. Treatment regimens for drug-susceptible TB are onerous, requiring a minimum of six months of treatment with four antitubercular drugs. There are patients who develop multi-drug-resistant (MDR), extensively drug-resistant (XDR) and totally drug-resistant (TDR) forms, which are successively more difficult to treat. In these circumstances, treatment regimens involve the use of a larger number of less-effective drugs, which have a narrower therapeutic margin.In many bacteria, drug-resistance determinants are carried on mobile genetic elements. However, in Mycobacterium tuberculosis (Mtb), drug resistance is exclusively associated with point mutations and chromosomal rearrangements. Poor or intermittent therapy has long been thought to be the major explanation for drug resistance, and it is believed that drug-resistant strains develop through the sequential fixation of a small set of mutations, such that the pathogen samples only a small proportion of possible evolutionary paths [1].The application of whole-genome sequencing (WGS) has revealed previously underappreciated levels of genetic diversity within circulating Mtb populations, and the implications of this diversity for transmission and disease outcomes are increasingly being acknowledged. By contrast, mycobacterial heterogeneity within a single host, and any concomitant biological or clinical significance, has been explored but seldom documented.In a study published in this issue of Genome Biology, Eldholm and colleagues apply WGS to investigate the evolution from drug-sensitive to XDR-TB within a single patient [2]. This adds to an emerging body of evidence that suggests that intra-host microbial diversity is substantial and might have significant consequences when inferring transmission. There are few instances, if any, in the literature where this has been investigated in such detail.  相似文献   

19.
Tuberculosis (TB) along with acquired immune deficiency syndrome and malaria rank among the top three fatal infectious diseases which pose threat to global public health, especially in middle and low income countries. TB caused by Mycobacterium tuberculosis (Mtb) is an airborne infectious disease and one-third of the world's population gets infected with TB leading to nearly 1·6 million deaths annually. TB drugs are administered in different combinations of four first-line drugs (rifampicin, isoniazid, pyrazinamide and ethambutol) which form the core of treatment regimens in the initial treatment phase of 6–9 months. Several reasons account for the failure of TB therapy such as (i) late diagnosis, (ii) lack of timely and proper administration of effective drugs, (iii) lower availability of less toxic, inexpensive and effective drugs, (iv) long treatment duration, (v) nonadherence to drug regimen and (vi) evolution of drug-resistant TB strains. Drug-resistant TB poses a significant challenge to TB therapy and control programs. In the background of worldwide emergence of 558 000 new TB cases with resistance to rifampicin in the year 2017 and of them, 82% becoming multidrug-resistant TB (MDR-TB), it is essential to continuously update the knowledge on the mechanisms and molecular basis for evolution of Mtb drug resistance. This narrative and traditional review summarizes the progress on the anti-tubercular agents, their mode of action and drug resistance mechanisms in Mtb. The aim of this review is to provide recent updates on drug resistance mechanisms, newly developed/repurposed anti-TB agents in pipeline and international recommendations to manage MDR-TB. It is based on recent literature and WHO guidelines and aims to facilitate better understanding of drug resistance for effective TB therapy and clinical management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号