首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite reductase was also insensitive to ammonium. The inhibition of nitrate and nitrite transport required the PII protein (glnB gene product) and the C-terminal domain of NrtC, one of the two ATP-binding subunits of the transporter, as in the Synechococcus strain. Mutants expressing the PII derivatives in which Ala or Glu is substituted for the conserved Ser49, which has been shown to be the phosphorylation site in the Synechococcus strain, showed ammonium-promoted inhibition of nitrate uptake like that of the wild-type strain. The S49A and S49E substitutions in GlnB did not affect the regulation of the nitrate and nitrite transporter in Synechococcus either. These results indicated that the presence or absence of negative electric charge at the 49th position does not affect the activity of the PII protein to regulate the cyanobacterial ABC-type nitrate and nitrite transporter according to the cellular nitrogen status. This finding suggested that the permanent inhibition of nitrate assimilation by an S49A derivative of PII, as was previously reported for Synechococcus elongatus strain PCC 7942, is likely to have resulted from inhibition of nitrate reductase rather than the nitrate and nitrite transporter.  相似文献   

2.
PII is an important signal protein for regulation of nitrogen metabolism in bacteria and plants. We constructed a mutant of glnB, encoding PII, in a heterocystous cyanobacterium, Anabaena sp. PCC 7120, with a cre-loxP system. The mutant (MP2alpha) grew more slowly than the wild type under all nitrogen regimens. It excreted a large amount of ammonium when grown on nitrate due to altered activities of glutamine synthetase and nitrate reductase. MP2alpha had a low nitrogenase activity but was able to form heterocysts under diazotrophic conditions, suggesting that PII is not required for heterocyst differentiation. Analysis of the PII with mass spectroscopy found tyrosine nitration at Tyr-51 under diazotrophic conditions while no phosphorylation at Ser-49 was detected. The strains 51F and 49A, which have PII with mutations of Y51F and S49A, respectively, were constructed to analyze the functions of the two key residues on the T-loop. Like MP2alpha, they had low nitrogenase activity and grew slowly under diazotrophic conditions. 49A was also impaired in nitrate uptake and formed heterocysts in the presence of nitrate. The up-regulation of ntcA after nitrogen step-down, which was present in the wild type, was not observed in 51F and 49A. While our results showed that the Ser-49 residue is important to the function of PII in Anabaena sp. PCC 7120, evidence from the PII pattern of the wild type and 49A in non-denaturing gel electrophoresis suggested that Ser-49 is not modified. The possible physiological roles of tyrosine nitration of PII are discussed.  相似文献   

3.
In higher plants, the PII protein is a nuclear-encoded plastid protein that regulates the activity of a key enzyme of arginine biosynthesis. We have previously observed that Arabidopsis PII mutants are more sensitive to nitrite toxicity. Using intact chloroplasts isolated from Arabidopsis leaves and (15)N-labelled nitrite we show that a light-dependent nitrite uptake into chloroplasts is increased in PII knock-out mutants when compared to the wild-type. This leads to a higher incorporation of (15)N into ammonium and amino acids in the mutant chloroplasts. However, the uptake differences do not depend on GS/GOGAT activities. Our observations suggest that PII is involved in the regulation of nitrite uptake into higher plant chloroplasts.  相似文献   

4.
5.
This work reports the isolation and preliminary characterization ofNicotiana plumbaginifolia mutants resistant to methylammonium.Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up byNicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.  相似文献   

6.
Signal transduction protein P(II) is dephosphorylated in Synechocystis sp. strain PCC 6803 by protein phosphatase PphA. To determine the impact of PphA-mediated P(II) dephosphorylation on physiology, the phenotype of a PphA-deficient mutant was analyzed. Mutants lacking either PphA or P(II) were impaired in efficient utilization of nitrate as the nitrogen source. Under conditions of limiting photosystem I (PSI)-reduced ferredoxin, excess reduction of nitrate along with impaired reduction of nitrite occurred in P(II) signaling mutants, resulting in excretion of nitrite to the medium. This effect could be reversed by increasing the level of PSI-reduced ferredoxin. We present evidence that nonphosphorylated P(II) controls the utilization of nitrate in response to low light intensity by tuning down nitrate uptake to meet the actual reduction capacity. This control mechanism can be bypassed by exposing cells to excess levels of nitrate. Uncontrolled nitrate uptake leads to light-dependent nitrite excretion even in wild-type cells, confirming that nitrate uptake controls nitrate utilization in response to limiting photon flux densities.  相似文献   

7.
8.
narK mutants of Escherichia coli produce wild-type levels of nitrate reductase but, unlike the wild-type strain, do not accumulate nitrite when grown anaerobically on a glucose-nitrate medium. Comparison of the rates of nitrate and nitrite metabolism in cultures growing anaerobically on glucose-nitrate medium revealed that a narK mutant reduced nitrate at a rate only slightly slower than that in the NarK+ parental strain. Although the specific activities of nitrate reductase and nitrite reductase were similar in the two strains, the parental strain accumulated nitrite in the medium in almost stoichiometric amounts before it was further reduced, while the narK mutant did not accumulate nitrite in the medium but apparently reduced it as rapidly as it was formed. Under conditions in which nitrite reductase was not produced, the narK mutant excreted the nitrite formed from nitrate into the medium; however, the rate of reduction of nitrate to nitrite was significantly slower than that of the parental strain or that which occurred when nitrite reductase was present. These results demonstrate that E. coli is capable of taking up nitrate and excreting nitrite in the absence of a functional NarK protein; however, in growing cells, a functional NarK promotes a more rapid rate of anaerobic nitrate reduction and the continuous excretion of the nitrite formed. Based on the kinetics of nitrate reduction and of nitrite reduction and excretion in growing cultures and in washed cell suspensions, it is proposed that the narK gene encodes a nitrate/nitrite antiporter which facilitates anaerobic nitrate respiration by coupling the excretion of nitrite to nitrate uptake. The failure of nitrate to suppress the reduction of trimethylamine N-oxide in narK mutants was not due to a change in the level of trimethylamine N-oxide reductase but apparently resulted from a relative decrease in the rate of anaerobic nitrate reduction caused by the loss of the antiporter system.  相似文献   

9.
10.
11.
Summary Post-translational regulation of nitrogen fixation, or switch-off, in the methanogenic archaeon Methanococcus maripaludis does not involve detectable covalent modification of the dinitrogenase reductase as in some bacteria, and the genes encoding the PII homologues NifI(1) and NifI(2) are both required, indicating a novel mechanism. To further understand the mechanism of switch-off, we assayed nitrogenase activity in cell extracts from wild-type and nifI mutant strains in the absence or presence of potential signals of nitrogen status. Activity in extracts from a DeltanifI(1)nifI(2) strain was sixfold higher than in extracts from wild-type cells. Addition of 2-oxoglutarate to wild-type extracts enhanced activity up to fivefold, a level similar to that observed in DeltanifI(1)nifI(2) extracts. 2-Oxoglutarate did not affect activity in DeltanifI(1)nifI(2) or single nifI mutant extracts. Furthermore, extracts from genetically complimented nifI mutants regained wild-type characteristics, indicating an in vitro correlation with in vivo effects. Extraction and quantification of 2-oxoglutarate indicated concentrations 10-fold higher in nitrogen-fixing cells than in switched-off and ammonium-grown cells. We propose a model for switch-off where the NifI proteins have an inhibitory effect on nitrogenase activity that is counteracted by high levels of 2-oxoglutarate, which acts as a signal of nitrogen limitation.  相似文献   

12.
In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities.  相似文献   

13.
Ammonium is the reduced nitrogen form available to plants for assimilation into amino acids. This is achieved by the GS/GOGAT pathway that requires carbon skeletons in the form of 2-oxoglutarate. To date, the exact enzymatic origin of this organic acid for plant ammonium assimilation is unknown. Isocitrate dehydrogenases and aspartate aminotransferases have been proposed to carry out this function. Since different (iso)forms located in several subcellular compartments are present within a plant cell, recent efforts have concentrated on evaluating the involvement of these enzymes in ammonium assimilation. Furthermore, several observations indicate that 2-oxoglutarate is a good candidate as a metabolic signal to regulate the co-ordination of C and N metabolism. This will be discussed with respect to recent advances in bacterial signalling processes involving a 2-oxoglutarate binding protein called PII.  相似文献   

14.
In Synechococcus elongatus, the PII protein inhibits both transport and reduction of nitrate when ammonium is present in the medium. Using a transporter mutant having ammonium-resistant nitrate transport activity as the genetic background, we analyzed specific effects of PII on in vivo nitrate reductase activity by measuring uptake of nitrate from the medium. The results showed that the regulation of nitrate reductase does not require changes in the electric charge or size of the side chain at the phosphorylation site of PII. Phosphorylation of PII is thus unlikely to play a role in the regulation of nitrate reductase.  相似文献   

15.
Amino acid uptake and utilization of various nitrogen sources (amino acids, nitrite, nitrate and ammonia) were studied in Nostoc ANTH and i ts mu tant (Het(-)Nif(-)) isolate defective in heterocyst formation and N2-fixation. Both parent and its mutant grew at the expense of glutamine, asparagine and arginine as a source of fixed-nitrogen. Growth was better in glutamine-and asparagine-media as compared to that in arginine media. Glutamine and asparagine repressed heterocyst formation, N2-fixation and nitrate reduction in Nostoc ANTH, but arginine did so only partially. The poor growth in arginine-medium was not due to poor uptake rates, since the uptake rates were not significantly different from those for glutamine or asparagine. The glutamine synthetase activity remained unaffected during cultivation in media containing any one of the three amino acids tested. The uptake of amino acids was substrate-inducible, energy-dependent and required de novo protein synthesis. Nitrate and ammonium repressed ammonium uptake, but did not repress uptake of amino acids. In N2-medium (BG-11(0)), the uptake of ammonium and amino acids in the mutant was significantly higher than its parent strain. This was apparently due to nitrogen limitation since the mutant was unable to fix N2 and the growth medium lacked combined-N.  相似文献   

16.
The inhibitor of mRNA synthesis, 6-methylpurine, inhibited nitrate reductase derepression in either ammonium-grown or methylammonium-treated wild-type cells of Chlamydomonas reinhardtii, but not in nitrogen-starved cells. In contrast, 6-methylpurine did not inhibit nitrate reductase synthesis in the methylammonium-resistant mutant 2170 (ma-1) either grown on ammonium, treated with methylammonium or nitrogen starved, but did inhibit the continuous synthesis of nitrate reductase, which required the presence of nitrate in the media. In both wild-type and mutant 2170 grown on ammonium and transferred to nitrate media, cycloheximide immediately prevented nitrate reductase derepression when added either at the beginning or at different times of induction treatment. Unlike wild-type cells, mutant 2170 was able to take up either nitrate or nitrite simultaneously with ammonium in whose presence nitrate and nitrite reductases were synthesized. However, synthesis of nitrate reductase was progressively inhibited in the mutant cells when the intracellular ammonium levels were raised as a result of an increase in either the external pH or the extracellular ammonium concentrations. The results rule out the existence of maturase-like proteins in Chlamydomonas and indicate that ammonium has a double effect on the regulation of nitrate reductase synthesis: (a) it prevents nitrate reductase mRNA production; and (b) it controls negatively the expression of this mRNA.  相似文献   

17.
The coexistence of two different PII, proteins in Azospirillum brasilense was established by comparing proteins synthesized by the wild-type strain and two null mutants of the characterized glnB gene (encoding PII) adjacent to glnA. Strains were grown under conditions of nitrogen limitation or nitrogen excess. The proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or isoelectric focusing gel electrophoresis and revealed either by [32P]phosphate or [3H]uracil labeling or by cross-reaction with an anti-A. brasilense PII-antiserum. After SDS-PAGE, a single band of 12.5 kDa revealed by the antiserum in all conditions tested was resolved by isoelectric focusing electrophoresis into two bands in the wild-type strain, one of which was absent in the glnB null mutant strains. The second PII protein, named Pz, was uridylylated under conditions of nitrogen limitation. The amino acid sequence deduced from the nucleotide sequence of the corresponding structural gene, called glnZ, is very similar to that of PII. Null mutants in glnB were impaired in regulation of nitrogen fixation and in their swarming properties but not in glutamine synthetase adenylylation. No glnZ mutant is yet available, but it is clear that PII and Pz are not functionally equivalent, since glnB null mutant strains exhibit phenotypic characters. The two proteins are probably involved in different regulatory steps of the nitrogen metabolism in A. brasilense.  相似文献   

18.
A new methylammonium-resistant mutant strain from Chlamydomonas reinhardtii, henceforth termed 2172 (ma-2), has been isolated. This mutant is affected in a single mendelian gene different from and linked to the ma-1 locus which is defective in the methylammonium-resistant mutant 2170. Both mutations in ma-1 (2170) and ma-2 (2172) are linked to the nit-1 gene coding for the nitrate reductase apoenzyme. Mutant 2172 is affected in methylammonium but not in ammonium uptake capacity and shows derepressed nitrate and nitrite reductase activities in media containing nitrate plus methylammonium but not in nitrate plus ammonium media. The following two enzymatic components for the transport of both ammonium and methylammonium in wild-type cells have been identified: component 1, with high Vmax and K values, which is constitutive, and component 2, with low Vmax and K values, which is ammonium-repressible. Mutant 2170 lacks component 1 whereas mutant 2172 lacks component 2 for both methylammonium and ammonium transport. From genetic and kinetic evidences we conclude that in C. reinhardtii two different carriers are responsible for the transport of both ammonium and methylammonium and that methylammonium (ammonium) transport is a reversible process probably inhibited by the intracellular ammonium which, in turn, regulates nitrate and nitrite reductase levels.  相似文献   

19.
Twenty-seven mutants that were unable to assimilate nitrate were isolated from Synechococcus sp. strain PCC 7942. In addition to mutants that lacked nitrate reductase or nitrite reductase, seven pleiotropic mutants impaired in both reductases, glutamine synthetase, and methylammonium transport were also isolated. One of the pleiotropic mutants was complemented by transformation with a cosmid gene bank from wild-type strain PCC 7942. Three complementing cosmids were isolated, and a 3.1-kilobase-pair DNA fragment that was still able to complement the mutant was identified. The regulatory gene that was cloned (ntcA) appeared to be required for full expression of proteins subject to ammonium repression in Synechococcus sp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号