首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Radial glia of the mouse cerebral cortex emerge from neuroepithelial stem cells around embryonic day 11 and produce excitatory cortical neurons until a few days before birth. The molecular mechanisms that regulate the end of cortical neurogenesis remain largely unknown. Here we investigated if the Dicer-dependent microRNA (miRNA) pathway is involved. By electroporating a cre-recombinase expression vector into the cortex of E13.5 embryos carrying a conditional allele of Dicer1, we induced mosaic recombination causing Dicer1 deletion and reporter activation in a subset of radial glia. We analysed the long-term fates of their progeny. We found that mutant radial glia produced abnormally large numbers of Cux1-positive neurons, many of which populated the superficial cortical layers. Injections of the S-phase marker bromodeoxyuridine between postnatal days 3 and 14 showed that much of this population was generated postnatally. Our findings suggest a role for Dicer-dependent processes in limiting the timespan of cortical neurogenesis.  相似文献   

3.
4.
5.
6.
Previous studies have shown that Sox3 is expressed in nascent neuroprogenitor cells and is functionally required in mammals for development of the dorsal telencephalon and hypothalamus. However, Sox3 expression during embryonic and adult neurogenesis has not been examined in detail. Using a SOX3-specific antibody, we show that murine SOX3 expression is maintained throughout telencephalic neurogenesis and is restricted to progenitor cells with neuroepithelial and radial glial morphologies. We also demonstrate that SOX3 is expressed within the adult neurogenic regions and is coexpressed extensively with the neural stem cell marker SOX2 indicating that it is a lifelong marker of neuroprogenitor cells. In contrast to the telencephalon, Sox3 expression within the developing hypothalamus is upregulated in developing neurons and is maintained in a subset of differentiated hypothalamic cells through to adulthood. Together, these data show that Sox3 regulation is region-specific, consistent with it playing distinct biological roles in the dorsal telencephalon and hypothalamus.  相似文献   

7.
Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research.  相似文献   

8.
Transplantation of neural progenitors or stem cells is a most useful tool to investigate the relative contribution of cell-autonomous mechanisms and environmental cues in the regulation of cell specification and differentiation during CNS development. To assess the capability of neocortical progenitor cells to integrate into foreign brain regions, here we examined the fate of precursor cells isolated from the dorsal telencephalon of E12 ß-actin-EGFP transgenic mouse embryos after heterotopic/heterochronic transplantation to the E16 rat brain in utero. Our observations show that donor cells were able to penetrate, survive and produce mature cell types into wide regions of the host CNS. Namely, EGFP-positive cells acquired site-specific neuronal identities in many telencephalic regions, including neocortex, hippocampus, olfactory bulb and corpus striatum. In contrast, incorporation into more caudal sites was much less efficient. A fraction of donor cells formed large aggregates that remained segregated from the host milieu. Such aggregates contained mature neurons and glia, including some EGFP-negative elements of host origin, and developed the complex organization of the mature nervous tissue. On the other hand, transplanted cells that engrafted in the parenchyma of extratelencephalic regions predominantly generated glial types. The few neurons failed to acquire obvious site-specific phenotypic traits and did not integrate into the local host architecture. Altogether, our observations indicate that E12 neocortical progenitors are already committed towards regional identities and are unable to modify their phenotypic choices when exposed to heterotopic environmental conditions along different rostro-caudal domains of the embryonic CNS.  相似文献   

9.
10.
Neurogenesis during the development of the mammalian cerebral cortex involves a switch of neural stem and progenitor cells from proliferation to differentiation. To explore the possible role of microRNAs (miRNAs) in this process, we conditionally ablated Dicer in the developing mouse neocortex using Emx1-Cre, which is specifically expressed in the dorsal telencephalon as early as embryonic day (E) 9.5. Dicer ablation in neuroepithelial cells, which are the primary neural stem and progenitor cells, and in the neurons derived from them, was evident from E10.5 onwards, as ascertained by the depletion of the normally abundant miRNAs miR-9 and miR-124. Dicer ablation resulted in massive hypotrophy of the postnatal cortex and death of the mice shortly after weaning. Analysis of the cytoarchitecture of the Dicer-ablated cortex revealed a marked reduction in radial thickness starting at E13.5, and defective cortical layering postnatally. Whereas the former was due to neuronal apoptosis starting at E12.5, which was the earliest detectable phenotype, the latter reflected dramatic impairment of neuronal differentiation. Remarkably, the primary target cells of Dicer ablation, the neuroepithelial cells, and the neurogenic progenitors derived from them, were unaffected by miRNA depletion with regard to cell cycle progression, cell division, differentiation and viability during the early stage of neurogenesis, and only underwent apoptosis starting at E14.5. Our results support the emerging concept that progenitors are less dependent on miRNAs than their differentiated progeny, and raise interesting perspectives as to the expansion of somatic stem cells.  相似文献   

11.
Neural Precursor Cells (NPCs) generate complex stereotypic arrays of neuronal subtypes in the brain. This process involves the integration of patterning cues that progressively restrict the fate of specific NPCs. Yet the capacity of NPCs to interpret foreign microenvironments during development remains poorly defined. The aim of this work was to test the competence of mouse telencephalic NPCs to respond to the dopaminergic niche of the mesencephalon. Telencephalic NPCs isolated from midgestation mouse embryos (E10.5) and transplanted to age-matched mesencephalic explants efficiently differentiated into neurons but were largely unable to produce midbrain dopaminergic (mDA) neurons. Instead, E10.5 telencephalic NPCs behaved as restricted gabaergic progenitors that maintained ectopic expression of Foxg1 and Pax6. In contrast, E8.5 telencephalic NPCs were able to differentiate into Lmx1a+/Foxa2+/TH+ neurons in the dopaminergic niche of the mesencephalic explants. In addition, these early telencephalic NPCs showed region-dependent expression of Nkx6.1, Nkx2.2 and site-specific differentiation into gabaergic neurons within the mesencephalic tissue. Significant dopaminergic differentiation of E8.5 telencephalic NPCs was not observed after transplantation to E12.5 mesencephalic explants, suggesting that inductive signals in the dopaminergic niche rapidly decay after midgestation. Moreover, we employed transplantation of embryonic stem cells-derived precursors to demonstrate that extinction of inductive signals within the telencephalon lags behind the commitment of residing NPCs. Our data indicate that the plasticity to interpret multiple instructive niches is an early and ephemeral feature of the telencephalic neural lineage.  相似文献   

12.
We studied adult neurogenesis in the short‐lived annual fish Nothobranchius furzeri and quantified the effects of aging on the mitotic activity of the neuronal progenitors and the expression of glial fibrillary acid protein (GFAP) in the radial glia. The distribution of neurogenic niches is substantially similar to that of zebrafish and adult stem cells generate neurons, which persist in the adult brain. As opposed to zebrafish, however, the N. furzeri genome contains a doublecortin (DCX) gene. Doublecortin is transiently expressed by newly generated neurons in the telencephalon and optic tectum (OT). We also analyzed the expression of the microRNA miR‐9 and miR‐124 and found that they have complementary expression domains: miR‐9 is expressed in the neurogenic niches of the telencephalon and the radial glia of the OT, while miR‐124 is expressed in differentiated neurons. The main finding of this paper is the demonstration of an age‐dependent decay in adult neurogenesis. Using unbiased stereological estimates of cell numbers, we detected an almost fivefold decrease in the number of mitotically active cells in the OT between young and old age. This reduced mitotic activity is paralleled by a reduction in DCX labeling. Finally, we detected a dramatic up‐regulation of GFAP in the radial glia of the aged brain. This up‐regulation is not paralleled by a similar up‐regulation of S100B and Musashi‐1, two other markers of the radial glia. In summary, the brain of N. furzeri replicates two typical hallmarks of mammalian aging: gliosis and reduced adult neurogenesis.  相似文献   

13.
The olfactory bulb, neocortex and archicortex arise from a common pool of progenitors in the dorsal telencephalon. We studied the consequences of supplying excess Notch1 signal in vivo on the cellular and regional destinies of telencephalic precursors using bicistronic replication defective retroviruses. After ventricular injections mid-neurogenesis (E14.5), activated Notch1 retrovirus markedly inhibited the generation of neurons from telencephalic precursors, delayed the emergence of cells from the subventricular zone (SVZ), and produced an augmentation of glial progeny in the neo- and archicortex. However, activated Notch1 had a distinct effect on the progenitors of the olfactory bulb, markedly reducing the numbers of cells of any type that migrated there. To elucidate the mechanism of the cell fate changes elicited by Notch1 signals in the cortical regions, short- and long-term cultures of E14.5 telencephalic progenitors were examined. These studies reveal that activated Notch1 elicits a cessation of proliferation that coincides with an inhibition of the generation of neurons. Later, during gliogenesis, activated Notch1 triggers a rapid cellular proliferation with a significant increase in the generation of cells expressing GFAP. To examine the generation of cells destined for the olfactory bulb, we used stereotaxic injections into the early postnatal anterior subventricular zone (SVZa). We observed that precursors of the olfactory bulb responded to Notch signals by remaining quiescent and failing to give rise to differentiated progeny of any type, unlike cortical precursor cells, which generated glia instead of neurons. These data show that forebrain precursors vary in their response to Notch signals according to spatial and temporal cues, and that Notch signals influence the composition of forebrain regions by modulating the rate of proliferation of neural precursor cells.  相似文献   

14.
Neuronal or glial progeny: regional differences in radial glia fate   总被引:27,自引:0,他引:27  
The precursor function of the ubiquitous glial cell type in the developing central nervous system (CNS), the radial glia, is largely unknown. Using Cre/loxP in vivo fate mapping studies, we found that radial glia generate virtually all cortical projection neurons but not the interneurons originating in the ventral telencephalon. In contrast to the cerebral cortex, few neurons in the basal ganglia originate from radial glia, and in vitro lineage analysis revealed intrinsic differences in the potential of radial glia from the dorsal and ventral telencephalon. This shows that the progeny of radial glia not only differs profoundly between brain regions but also includes the majority of neurons in some parts of the CNS.  相似文献   

15.
The distribution of different intermediate filament (IF) proteins in the embryonic chick spinal cord was examined at several stages of development using immunohistochemical techniques, analytic gel electrophoresis, and electron microscopy. We have found that: (1) the fibroblast-type IF protein (vimentin) is present in virtually all of the replicating neuroepithelial cells of the early neural tube, as well as in radial glia, astrocytes, and Schwann cells in later stages of development; (2) the fibroblast-type IF protein is not detectable in definitive neurons; (3) the neurofilament proteins are first detectable in postmitotic neuroblasts at about the time of initial axon formation and they are restricted to neurons; (4) the astrocyte-type IF protein (glial fibrillary acidic protein) is in definitive astrocytes, but not in radial glia; (5) the prekeratin proteins are restricted to cells of the leptomeninges; and (6) the muscle-type IF protein (desmin) is restricted to vascular tissue in and around the developing spinal cord. These findings suggest that the fibroblast-type IF protein is the only IF protein in the early neuroepithelial cells and that the progeny of these cells will follow one of three different patterns of IF protein expression: (1) continued expression of only the fibroblast-type IF protein (radial glia); (2) expression of both the fibroblast-type IF protein and the astrocyte-type IF protein (astrocytes); or (3) expression of only the neurofilament proteins (neurons).  相似文献   

16.
17.
Radial 'glial' progenitors: neurogenesis and signaling   总被引:5,自引:0,他引:5  
Cells with radial morphology in the developing brain were first identified more than 100 years ago. These cells, later termed radial glia, have been studied primarily as migratory scaffolds and glial progenitors. However, it has become increasingly clear, on the basis of in vitro studies and more recent in vivo fate mapping experiments, that radial glia also generate neurons during embryonic development. Now the challenge will be to understand the signaling events that regulate the spatial and temporal heterogeneity of these cells and their developmental potential. Recent work has identified the Notch, ErbB, and fibroblast growth factor signaling pathways as central to the regulation of radial 'glial' progenitors.  相似文献   

18.
GABAergic interneurons have major roles in hippocampal function and dysfunction. Here we provide evidence that, in mice, virtually all of these cells originate from progenitors in the basal telencephalon. Immature interneurons tangentially migrate from the basal telencephalon through the neocortex to take up their final positions in the hippocampus. Disrupting differentiation in the embryonic basal telencephalon (lateral and medial ganglionic eminences) through loss of Dlx1/2 homeobox function blocks the migration of virtually all GABAergic interneurons to the hippocampus. On the other hand, disrupting specification of the medial ganglionic eminence through loss of Nkx2.1 homeobox function depletes the hippocampus of a distinct subset of hippocampal interneurons. Loss of hippocampal interneurons does not appear to have major effects on the early development of hippocampal projection neurons nor on the pathfinding of afferrent tracts.  相似文献   

19.
20.
Dicer, a ribonuclease III enzyme, is required for the maturation of microRNAs. To assess its role in cerebellar and medulloblastoma development, we genetically deleted Dicer in Nestin-positive neural progenitors and in mice lacking one copy for the Sonic Hedgehog receptor, Patched 1. We found that conditional loss of Dicer in mouse neural progenitors induced massive Trp53-independent apoptosis in all proliferative zones of the brain and decreased proliferation of cerebellar granule progenitors at embryonic day 15.5 leading to abnormal cerebellar development and perinatal lethality. Loss of one copy of Dicer significantly accelerated the formation of mouse medulloblastoma of the Sonic Hedgehog subgroup in Patched1-heterozygous mice. We conclude that Dicer is required for proper cerebellar development, and to restrain medulloblastoma formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号