首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Squalene epoxidase (SE) catalyzes the conversion of squalene to (3S)-2,3-oxidosqualene. Photolabeling and site-directed mutagenesis were performed on recombinant rat SE (rrSE) in order to identify the location of the substrate-binding site and the roles of key residues in catalysis. Truncated 50-kDa rrSE was purified and photoaffinity labeled by competitive SE inhibitor (Ki=18.4 microM), [(3)H]TNSA-Dza. An 8-kDa CNBr/BNPS-skatole peptide was purified and the first 24 amino acids were sequenced by Edman degradation. The sequence PASFLPPSSVNKRGVLLLGDAYNL corresponded to residues 388-411 of the full-length rat SE. Three nucleophilic residues (Lys-399, Arg-400, and Asp-407) were labeled by [(3)H]TNSA-Dza. Triple mutants were prepared in which bulky groups were used to replace the labeled charged residues. Purified mutant enzymes showed lower enzymatic activity and reduced photoaffinity labeling by [(3)H]TNSA-Dza. This constitutes the first evidence as to the identity of the substrate-binding site of SE.  相似文献   

2.
Mani RS  Usova EV  Cass CE  Eriksson S 《Biochemistry》2006,45(11):3534-3541
Human deoxycytidine kinase (dCK) phosphorylates both pyrimidine and purine deoxynucleosides, including numerous nucleoside analogue prodrugs. Energy transfer studies of transfer between Trp residues of dCK and the fluorescent probe N-(1-pyrene)maleimide (PM), which specifically labels Cys residues in proteins, were performed. Two of the six Cys residues in dCK were labeled, yielding a protein that was functionally active. We determined the average distances between PM-labeled Cys residues and Trp residues in dCK in the absence and presence of various pyrimidine and purine nucleoside analogues with the Trp residues as energy donors and PM-labeled Cys residues as acceptors. The transfer efficiency was determined from donor intensity quenching and the F?rster distance R(0) at which the efficiency of energy transfer is 50%, which was 19.90 A for dCK-PM. The average distance R between the Trp residues and the labeled Cys residues in dCK-PM was 18.50 A, and once substrates bound, this distance was reduced, demonstrating conformational changes. Several of the Cys residues of dCK were mutated to Ala, and the properties of the purified mutant proteins were studied. PM labeled a single Cys residue in Cys-185-Ala dCK, suggesting that one of the two Cys residues labeled in wild-type dCK was Cys 185. The distance between the single PM-labeled Cys residue and the Trp residues in Cys-185-Ala dCK was 20.75 A. Binding of nucleosides had no effect on the pyrene fluorescence of Cys-185-Ala dCK, indicating that the conformational changes observed upon substrate binding to wild-type dCK-PM involved the "lid region" of which Cys 185 is a part. The substrate specificity of Cys-185-Ala dCK was altered in that dAdo and UTP were better substrates for the mutant than for the wild-type enzyme.  相似文献   

3.
The epithelial Na+ channel (ENaC) is comprised of three homologous subunits (α, β, and γ) that have a similar topology with two transmembrane domains, a large extracellular region, and cytoplasmic N and C termini. Although ENaC activity is regulated by a number of factors, palmitoylation of its cytoplasmic Cys residues has not been previously described. Fatty acid-exchange chemistry was used to determine whether channel subunits were Cys-palmitoylated. We observed that only the β and γ subunits were modified by Cys palmitoylation. Analyses of ENaCs with mutant β subunits revealed that Cys-43 and Cys-557 were palmitoylated. Xenopus oocytes expressing ENaC with a β C43A,C557A mutant had significantly reduced amiloride-sensitive whole cell currents, enhanced Na+ self-inhibition, and reduced single channel Po when compared with wild-type ENaC, while membrane trafficking and levels of surface expression were unchanged. Computer modeling of cytoplasmic domains indicated that β Cys-43 is in proximity to the first transmembrane α helix, whereas β Cys-557 is within an amphipathic α-helix contiguous with the second transmembrane domain. We propose that β subunit palmitoylation modulates channel gating by facilitating interactions between cytoplasmic domains and the plasma membrane.  相似文献   

4.
Sites for Cys substitutions to form a disulfide bond were chosen in subtilisin E from Bacillus subtilis, a cysteine-free bacterial serine protease, based on the structure of aqualysin I of Thermus aquaticus YT-1 (a thermophilic subtilisin-type protease containing two disulfide bonds). Cys residues were introduced at positions 61 (wild-type, Gly) and 98 (Ser) in subtilisin E by site-directed mutagenesis. The Cys-61/Cys-98 mutant subtilisin appeared to form a disulfide bond spontaneously in the expression system used and showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. The thermodynamic characteristics of these enzymes were examined in terms of enzyme autolysis (t1/2) and thermal stability (Tm). The half-life of the Cys-61/Cys-98 mutant was found to be 2-3 times longer than that of the wild-type enzyme. Similar results were obtained by differential scanning calorimetry. The disulfide mutant showed a Tm of 63.0 degrees C, which was 4.5 degrees C higher than that observed for the wild-type enzyme. Under reducing conditions, however, the characteristics of the mutant enzyme were found to revert to those of the wild-type enzyme. These results strongly suggest that the introduction of a disulfide bond by site-directed mutagenesis enhanced the thermostability of subtilisin E without changing the catalytic efficiency of the enzyme.  相似文献   

5.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

6.
To gain insight into the molecular architecture of the cytoplasmic surface of G protein-coupled receptors, we have developed a disulfide cross-linking strategy using the m3 muscarinic receptor as a model system. To facilitate the interpretation of disulfide cross-linking data, we initially generated a mutant m3 muscarinic receptor (referred to as m3'(3C)-Xa) in which most native Cys residues had been deleted or substituted with Ala or Ser (remaining Cys residues Cys-140, Cys-220, and Cys-532) and in which the central portion of the third intracellular loop had been replaced with a factor Xa cleavage site. Radioligand binding and second messenger assays showed that the m3'(3C)-Xa mutant receptor was fully functional. In the next step, pairs of Cys residues were reintroduced into the m3'(3C)-Xa construct, thus generating 10 double Cys mutant receptors. All 10 mutant receptors contained a Cys residue at position 169 at the beginning of the second intracellular loop and a second Cys within the C-terminal portion of the third intracellular loop, at positions 484-493. Radioligand binding studies and phosphatidylinositol assays indicated that all double Cys mutant receptors were properly folded. Membrane lysates prepared from COS-7 cells transfected with the different mutant receptor constructs were incubated with factor Xa protease and the oxidizing agent Cu(II)-(1,10-phenanthroline)3, and the formation of intramolecular disulfide bonds between juxtaposed Cys residues was monitored by using a combined immunoprecipitation/immunoblotting strategy. To our surprise, efficient disulfide cross-linking was observed with 8 of the 10 double Cys mutant receptors studied (Cys-169/Cys-484 to Cys-491), suggesting that the intracellular m3 receptor surface is characterized by pronounced backbone fluctuations. Moreover, [35S]guanosine 5'-3-O-(thio)triphosphate binding assays indicated that the formation of intramolecular disulfide cross-links prevented or strongly inhibited receptor-mediated G protein activation, suggesting that the highly dynamic character of the cytoplasmic receptor surface is a prerequisite for efficient receptor-G protein interactions. This is the first study using a disulfide mapping strategy to examine the three-dimensional structure of a hormone-activated G protein-coupled receptor.  相似文献   

7.
Synaptotagmin I (Syt I), a proposed major Ca(2+) sensor in the central nervous system, has been hypothesized as functioning in an oligomerized state during neurotransmitter release. We previously showed that Syts I, II, VII, and VIII form a stable SDS-resistant, beta-mercaptoethanol-insensitive, and Ca(2+)-independent oligomer surrounding the transmembrane domain (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the molecular mechanism of the Ca(2+)-independent oligomerization by the synaptotagmin family. In this study, we analyzed the Ca(2+)-independent oligomerization properties of Syt I and found that it shows two distinct forms of self-oligomerization activity: stable SDS-resistant self-oligomerization activity and relatively unstable SDS-sensitive self-oligomerization activity. The former was found to be mediated by a post-translationally modified (i.e. fatty-acylated) cysteine (Cys) cluster (Cys-74, Cys-75, Cys-77, Cys-79, and Cys-82) at the interface between the transmembrane and spacer domains of Syt I. We also show that the number of Cys residues at the interface between the transmembrane and spacer domains determines the SDS- resistant oligomerizing capacity of each synaptotagmin isoform: Syt II, which contains seven Cys residues, showed the strongest SDS-resistant oligomerizing activity in the synaptotagmin family, whereas Syt XII, which has no Cys residues, did not form any SDS-resistant oligomers. The latter SDS-sensitive self-oligomerization of Syt I is mediated by the spacer domain, because deletion of the whole spacer domain, including the Cys cluster, abolished it, whereas a Syt I(CA) mutant carrying Cys to Ala substitutions still exhibited self-oligomerization. Based on these results, we propose that the oligomerization of the synaptotagmin family is regulated by two distinct mechanisms: the stable SDS-resistant oligomerization is mediated by the modified Cys cluster, whereas the relatively unstable (SDS-sensitive) oligomerization is mediated by the environment of the spacer domain.  相似文献   

8.
The protein encoded by v-sis, the oncogene of simian sarcoma virus, is homologous to the B chain of platelet-derived growth factor (PDGF). There are eight conserved Cys residues between PDGF-B and the v-sis protein. Both native PDGF and the v-sis protein occur as disulfide-bonded dimers, probably containing both intramolecular and intermolecular disulfide bonds. Oligonucleotide-directed mutagenesis was used to change the Cys codons to Ser codons in the v-sis gene. Four single mutants lacked detectable biological activity, indicating that Cys-127, Cys-160, Cys-171, and Cys-208 are required for formation of a biologically active v-sis protein. The other four single mutants retained biological activity as determined in transformation assays, indicating that Cys-154, Cys-163, Cys-164, and Cys-210 are dispensable for biological activity. Double and triple mutants containing three of these altered sites were constructed, some of which were transforming as well. The v-sis proteins encoded by biologically active mutants displayed significantly reduced levels of dimeric protein compared with the wild-type v-sis protein, which dimerized very efficiently. Furthermore, a mutant with a termination codon at residue 209 exhibited partial transforming activity. This study thus suggests that the minimal region required for transformation consists of residues 127 to 208. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the v-sis proteins encoded by some of the biologically active mutants exhibited an altered conformation when compared with the wild-type v-sis protein, and suggested that Cys-154 and Cys-163 participate in a nonessential disulfide bond.  相似文献   

9.
Based on predictions of the structure of proteinase 3C of poliovirus, mutations have been made at residues that are supposed to constitute the catalytic triad. Wild-type and mutant 3C were expressed in Escherichia coli, purified to homogeneity, and characterized by the ability to cleave a synthetic peptide substrate or an in vitro translated polypeptide consisting of part of the polyprotein of poliovirus. Additionally, the ability of autocatalytic processing of a precursor harboring wild-type or mutant 3C sequences was tested. Single substitutions of the residues His-40, Glu-71, and Cys-147 by Tyr, Gln, and Ser, respectively, resulted in an inactive enzyme. Replacement of Asp-85 by Asn resulted in an enzyme that was as active as wild-type enzyme in trans cleavage assays but whose autoprocessing ability was impaired. Our results are consistent with the proposal that residues His-40, Glu-71, and Cys-147 constitute the catalytic triad of poliovirus 3C proteinase. Furthermore, residue Asp-85 is not required for proper proteolytic activity despite being highly conserved between different picornaviruses. This indicates that Asp-85 might be involved in a different function of 3C.  相似文献   

10.
In order to elucidate the role of particular amino acid residues in the catalytic activity and conformational stability of human aldolases A and B [EC 4.1.2.13], the cDNAs encoding these isoenzyme were modified using oligonucleotide-directed, site-specific mutagenesis. The Cys-72 and/or Cys-338 of aldolase A were replaced by Ala and the COOH-terminal Tyr of aldolases A and B was replaced by Ser. The three mutant aldolases A thus prepared, A-C72A, A-C338A, and A-C72,338A, were indistinguishable from the wild-type enzyme with respect to general catalytic properties, while the replacement of Tyr-363 by Ser in aldolase A (A-Y363S) resulted in decreases of the Vmax of the fructose-1, 6-bisphosphate (FDP) cleavage reaction, activity ratio of FDP/fructose-1-phosphate (F1P), and the Km values for FDP and F1P. The wild-type and all the mutant aldolase A proteins exhibited similar thermal stabilities. In contrast, the mutant aldolase A proteins were more stable than the wild-type enzyme against tryptic and alpha-chymotryptic digestions. Based upon these results it is concluded that the strictly conserved Tyr-363 of human aldolase A is required for the catalytic function with FDP as the substrate, while neither Cys-72 nor Cys-338 directly takes part in the catalytic function although the two Cys residues may be involved in maintaining the correct spatial conformation of aldolase A. Replacement of Tyr-363 by Ser in human aldolase B lowered the Km value for FDP appreciably and also diminished the stability against elevated temperatures and tryptic digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Carnitine palmitoyltransferase (CPT) I catalyzes the conversion of long-chain fatty acyl-CoAs to acyl carnitines in the presence of l-carnitine, a rate-limiting step in the transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix. To determine the role of the 15 cysteine residues in the heart/skeletal muscle isoform of CPTI (M-CPTI) on catalytic activity and malonyl-CoA sensitivity, we constructed a 6-residue N-terminal, a 9-residue C-terminal, and a 15-residue cysteineless M-CPTI by cysteine-scanning mutagenesis. Both the 9-residue C-terminal mutant enzyme and the complete 15-residue cysteineless mutant enzyme are inactive but that the 6-residue N-terminal cysteineless mutant enzyme had activity and malonyl-CoA sensitivity similar to those of wild-type M-CPTI. Mutation of each of the 9 C-terminal cysteines to alanine or serine identified a single residue, Cys-305, to be important for catalysis. Substitution of Cys-305 with Ala in the wild-type enzyme inactivated M-CPTI, and a single change of Ala-305 to Cys in the 9-residue C-terminal cysteineless mutant resulted in an 8-residue C-terminal cysteineless mutant enzyme that had activity and malonyl-CoA sensitivity similar to those of the wild type, suggesting that Cys-305 is the residue involved in catalysis. Sequence alignments of CPTI with the acyltransferase family of enzymes in the GenBank led to the identification of a putative catalytic triad in CPTI consisting of residues Cys-305, Asp-454, and His-473. Based on the mutagenesis and substrate labeling studies, we propose a mechanism for the acyltransferase activity of CPTI that uses a catalytic triad composed of Cys-305, His-473, and Asp-454 with Cys-305 serving as a probable nucleophile, thus acting as a site for covalent attachment of the acyl molecule and formation of a stable acyl-enzyme intermediate. This would in turn allow carnitine to act as a second nucleophile and complete the acyl transfer reaction.  相似文献   

12.
We examined the effect of a novel disulfide bond engineered in subtilisin E from Bacillus subtilis based on the structure of a thermophilic subtilisin-type serine protease aqualysin I. Four sites (Ser163/Ser194, Lys170/Ser194, Lys170/Glu195, and Pro172/Glu195) in subtilisin E were chosen as candidates for Cys substitutions by site-directed mutagenesis. The Cys170/Cys195 mutant subtilisin formed a disulfide bond in B. subtilis, and showed a 5-10-fold increase in specific activity for an authentic peptide substrate for subtilisin, N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide, compared with the single-Cys mutants. However, the disulfide mutant had a 50% decrease in catalytic efficiency due to a smaller k(cat) and was thermolabile relative to the wild-type enzyme, whereas it was greatly stabilized relative to its reduced form. These results suggest that an electrostatic interaction between Lys170 and Glu195 is important for catalysis and stability in subtilisin E. Interestingly, the disulfide mutant was found to be more stable in polar organic solvents, such as dimethylformamide and ethanol, than the wild-type enzyme, even under reducing conditions; this is probably due to the substitution of uncharged Cys by charged surface residues (Lys170 and Glu195). Further, the amino-terminal engineered disulfide bond (Gly61Cys/Ser98Cys) and the mutation Ile31Leu were introduced to enhance the stability and catalytic activity. A prominent 3-4-fold increase in the catalytic efficiency occurred in the quintet mutant enzyme over the range of dimethylformamide concentration (up to 40%).  相似文献   

13.
Three cysteine residues are located in the pro region of the transforming growth factor beta 1 (TGF-beta 1) precursor at amino acid positions 33, 223, and 225. Previous studies (Gentry, L. E., Lioubin, M. N., Purchio, A. F., and Marquardt, H. (1988) Mol. Cell. Biol. 8, 4162-4168) with purified recombinant TGF-beta 1 (rTGF-beta 1) precursor produced by Chinese hamster ovary (CHO) cells revealed that Cys-33 can form a disulfide bond with at least 1 cysteine residue in mature TGF-beta 1, contributing to the formation of a 90-110-kDa protein. We now show that Cys-223 and Cys-225 form interchain disulfide bonds. Site-directed mutagenesis was used to change these Cys codons to Ser codons, and mutant constructs were transfected into COS cells. Analysis of recombinant proteins by immunoblotting showed that by substituting Cys-33 the 90-110-kDa protein is not formed, and thus, more mature dimer (24 kDa) is obtained, corresponding to a 3- to 5-fold increase in biological activity. Substitution of Cys-223 and/or Cys-225 resulted in near wild-type levels of mature TGF-beta 1. Furthermore, cells transfected with plasmid coding for Ser at positions 223 and 225 expressed only monomeric precursor proteins and released bioactive TGF-beta 1 that did not require acid activation, suggesting that dimerization of the precursor pro region may be necessary for latency.  相似文献   

14.
The vitamin K oxidoreductase (VKOR) reduces vitamin K to support the carboxylation and consequent activation of vitamin K-dependent proteins, but the mechanism of reduction is poorly understood. VKOR is an integral membrane protein that reduces vitamin K using membrane-embedded thiols (Cys-132 and Cys-135), which become oxidized with concomitant VKOR inactivation. VKOR is subsequently reactivated by an unknown redox protein that is currently thought to act directly on the Cys132-Cys135 residues. However, VKOR contains evolutionarily conserved Cys residues (Cys-43 and Cys-51) that reside in a loop outside of the membrane, raising the question of whether they mediate electron transfer from a redox protein to Cys-132/Cys-135. To assess a possible role, the activities of mutants with Ala substituted for Cys (C43A and C51A) were analyzed in intact membranes using reductants that were either membrane-permeable or -impermeable. Both reductants resulted in wild type VKOR reduction of vitamin K epoxide; however, the C43A and C51A mutants only showed activity with the membrane-permeant reductant. We obtained similar results when testing the ability of wild type and mutant VKORs to support carboxylation, using intact membranes from cells coexpressing VKOR and carboxylase. These results indicate a role for Cys-43 and Cys-51 in catalysis, suggesting a relay mechanism in which a redox protein transfers electrons to these loop residues, which in turn reduce the membrane-embedded Cys132-Cys135 disulfide bond to activate VKOR. The results have implications for the mechanism of warfarin resistance, the topology of VKOR in the membrane, and the interaction of VKOR with the carboxylase.  相似文献   

15.
The crystal structure of the metallo-beta-lactamase CcrA3 indicates that the active site of this enzyme contains a binuclear zinc center. To aid in assessing the involvement of specific residues in beta-lactam hydrolysis and susceptibility to inhibitors, individual substitutions of selected amino acids were generated. Substitution of the zinc-ligating residue Cys181 with Ser (C181S) resulted in a significant reduction in hydrolytic activity; kcat values decreased 2-4 orders of magnitude for all substrates. Replacement of His99 with Asn (H99N) significantly reduced the hydrolytic activity for penicillin and imipenem. Replacement of Asp103 with Asn (D103N) showed reduced hydrolytic activity for cephaloridine and imipenem. Deletion of amino acids 46-51 dramatically reduced both the hydrolytic activity and affinity for all beta-lactams. The metal binding capacity of each mutant enzyme was examined using nondenaturing electrospray ionization mass spectrometry. Two zinc ions were observed for the wild-type enzyme and most of the mutant enzymes. However, for the H99N, C181S, and D103N enzymes, three different zinc content patterns were observed. These enzymes contained two zinc molecules, one zinc molecule, and a mixture of one or two zinc molecules/enzyme molecule, respectively. Two enzymes with substitutions of Cys104 or Cys104 and Cys155 were also composed of mixed enzyme populations.  相似文献   

16.
The Calvin Cycle enzyme phosphoribulokinase is activated in higher plants by the reversible reduction of a disulfide bond, which is located at the active site. To determine the possible contribution of the two regulatory residues (Cys16 and Cys55) to catalysis, site-directed mutagenesis has been used to replace each of them in the spinach enzyme with serine or alanine. The only other cysteinyl residues of the kinase, Cys244 and Cys250, were also replaced individually by serine or alanine. A comparison of specific activities of native and mutant enzymes reveals that substitutions at positions 244 or 250 are inconsequential. The position 16 mutants retain 45-90% of the wild-type activity and display normal Km values for both ATP and ribulose 5-phosphate. In contrast, substitution at position 55 results in 85-95% loss of wild-type activity, with less than a 2-fold increase in the Km for ATP and a 4-8-fold increase in the Km for ribulose 5-phosphate. These results are consistent with moderate facilitation of catalysis by Cys55 and demonstrate that the other three cysteinyl residues do not contribute significantly either to structure or catalysis. The enhanced stability, relative to wild-type enzyme, of the Ser16 mutant protein to a sulfhydryl reagent supports earlier suggestions that Cys16 is the initial target of the oxidative deactivation process.  相似文献   

17.
The epithelial sodium channel (ENaC) is composed of three homologous subunits (α, β, and γ) with cytoplasmic N and C termini. Our previous work revealed that two cytoplasmic Cys residues in the β subunit, βCys-43 and βCys-557, are Cys-palmitoylated. ENaCs with mutant βC43A/C557A exhibit normal surface expression but enhanced Na+ self-inhibition and reduced channel open probability. Although the α subunit is not palmitoylated, we now show that the two cytoplasmic Cys residues in the γ subunit are palmitoylated. ENaCs with mutant γC33A, γC41A, or γC33A/C41A exhibit reduced activity compared with wild type channels but normal surface expression and normal levels of α and γ subunit-activating cleavage. These mutant channels have significantly enhanced Na+ self-inhibition and reduced open probability compared with wild type ENaCs. Channel activity was enhanced by co-expression with the palmitoyltransferase DHHC2 that also co-immunoprecipitates with ENaCs. Secondary structure prediction of the N terminus of the γ subunit places γCys-33 within an α-helix and γCys-44 on a coil before the first transmembrane domain within a short tract that includes a well conserved His-Gly motif, where mutations have been associated with altered channel gating. Our current and previous results suggest that palmitoylation of the β and γ subunits of ENaCs enhances interactions of their respective cytoplasmic domains with the plasma membrane and stabilizes the open state of the channel. Comparison of activities of channels lacking palmitoylation sites in individual or multiple subunits revealed that γ subunit palmitoylation has a dominant role over β subunit palmitoylation in modulating ENaC gating.  相似文献   

18.
The cellular form of human prostatic acid phosphatase (PAcP) is a neutral protein-tyrosine phosphatase (PTP) and may play a key role in regulating the growth and androgen responsiveness of prostate cancer cells. The functional role of the enzyme is at least due in part to its dephosphorylation of c-ErbB-2, an in vivo substrate of the enzyme. In this study, we investigated the molecular mechanism of phosphotyrosine dephosphorylation by cellular PAcP. We mutated several amino acid residues including one cysteine residue that was proposed to be involved in the PTP activity of the enzyme by serving as the phosphate acceptor. The cDNA constructs of mutant enzymes were transiently transfected into C-81 LNCaP and PC-3 human prostate cancer cells that lack the endogenous PAcP expression. The phosphotyrosine level of ErbB-2 in these transfected cells was subsequently analyzed. Our results demonstrated that the phosphotyrosine level of ErbB-2 in cells expressing H12A or D258A mutant PAcP is similar to that in control cells without PAcP expression, suggesting that these mutants are incapable of dephosphorylating ErbB-2. In contrast, cells expressing C183A, C281A, or wild-type PAcP had a decreased phosphotyrosine level of ErbB-2, compared with the control cells. Similar results were obtained from in vitro dephosphorylation of immunoprecipitated ErbB-2 by these mutant enzymes. Furthermore, transient expression of C183A, C281A, or the wild-type enzyme, but not H12A or D258A, decreased the growth rate of C-81 LNCaP cells. The data collectively indicate that His-12 and Asp-258, but not Cys-183 or Cys-281, are required for the PTP activity of PAcP.  相似文献   

19.
SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine (TCEP), indicating the possible involvement of disulfide bridge(s). Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.  相似文献   

20.
We have probed the structural/functional relationship of key residues in human placental alkaline phosphatase (PLAP) and compared their properties with those of the corresponding residues in Escherichia coli alkaline phosphatase (ECAP). Mutations were introduced in wild-type PLAP, i.e. [E429]PLAP, and in some instances also in [G429]PLAP, which displays properties characteristic of the human germ cell alkaline phosphatase isozyme. All active site metal ligands, as well as residues in their vicinity, were substituted to alanines or to the homologous residues present in ECAP. We found that mutations at Zn2 or Mg sites had similar effects in PLAP and ECAP but that the environment of the Zn1 ion in PLAP is less affected by substitutions than that in ECAP. Substitutions of the Mg and Zn1 neighboring residues His-317 and His-153 increased k(cat) and increased K(m) when compared with wild-type PLAP, contrary to what was predicted by the reciprocal substitutions in ECAP. All mammalian alkaline phosphatases (APs) have five cysteine residues (Cys-101, Cys-121, Cys-183, Cys-467, and Cys-474) per subunit, not homologous to any of the four cysteines in ECAP. By substituting each PLAP Cys by Ser, we found that disrupting the disulfide bond between Cys-121 and Cys-183 completely prevents the formation of the active enzyme, whereas the carboxyl-terminally located Cys-467-Cys-474 bond plays a lesser structural role. The substitution of the free Cys-101 did not significantly affect the properties of the enzyme. A distinguishing feature found in all mammalian APs, but not in ECAP, is the Tyr-367 residue involved in subunit contact and located close to the active site of the opposite subunit. We studied the A367 and F367 mutants of PLAP, as well as the corresponding double mutants containing G429. The mutations led to a 2-fold decrease in k(cat), a significant decrease in heat stability, and a significant disruption of inhibition by the uncompetitive inhibitors l-Phe and l-Leu. Our mutagenesis data, computer modeling, and docking predictions indicate that this residue contributes to the formation of the hydrophobic pocket that accommodates and stabilizes the side chain of the inhibitor during uncompetitive inhibition of mammalian APs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号