首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two water molecules reside between inhibitors and active site residues of scytalone dehydratase. A molecular dynamics study is consistent with one water molecule binding less tightly than the other. Inhibitor binding studies with site-directed mutants indicate that the hydrogen bonding network around the less mobile water molecule contributes much greater binding energy than that around the more mobile one.  相似文献   

2.
Alternative substrates and site-directed mutations of active-site residues are used to probe factors controlling the catalytic efficacy of scytalone dehydratase. In the E1cb-like, syn-elimination reactions catalyzed, efficient catalysis requires distortion of the substrate ring system to facilitate proton abstraction from its C2 methylene and elimination of its C3 hydroxyl group. Theoretical calculations indicate that such distortions are more readily achieved in the substrate 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO) than in the physiological substrates vermelone and scytalone by approximately 2 kcal/mol. A survey of 12 active-site amino acid residues reveals 4 site-directed mutants (H110N, N131A, F53A, and F53L) have higher relative values of k(cat) and k(cat)/K(m) for DDBO over scytalone and for DDBO over vermelone than the wild-type enzyme, thus suggesting substrate-distortion roles for the native residues in catalysis. A structural link for this function is in the modeled enzyme-substrate complex where F53 and H110 are positioned above and below the substrate's C3 hydroxyl group, respectively, for pushing and pulling the leaving group into the axial orientation of a pseudo-boat conformation; N131 hydrogen-bonds to the C8 hydroxyl group at the opposite end of the substrate, serving as a pivot for the actions of F53 and H110. Deshydroxyvermelone lacks the phenolic hydroxyl group and the intramolecular hydrogen bond of vermelone. The relative values of k(cat) (95) and k(cat)/K(m) (1800) for vermelone over deshydroxyvermelone for the wild-type enzyme indicate the importance of the hydroxyl group for substrate recognition and catalysis. Off the enzyme, the much slower rates for the solvolytic dehydration of deshydroxyvermelone and vermelone are similar, thus specifying the importance of the hydroxyl group of vermelone for enzyme catalysis.  相似文献   

3.
4.
LinA from Sphingobium japonicum UT26 catalyzes two steps of dehydrochlorination from γ hexachlorocyclohexane (HCH) to 1,3,4,6-tetrachloro-1,4-cyclohexadiene via γ-pentachlorocyclohexene. We determined the crystal structure of LinA at 2.25 Å by single anomalous dispersion. LinA exists as a homotrimer, and each protomer forms a cone-shaped α + β barrel fold. The C-terminal region of LinA is extended to the neighboring subunit, unlike that of scytalone dehydratase from Magnaporthe grisea, which is one of the most structurally similar proteins identified by the DALI server. The structure we obtained in this study is in open form, in which γ-HCH can enter the active site. There is a hydrophobic cavity inside the barrel fold, and the active site is largely surrounded by the side chains of K20, L21, V24, D25, W42, L64, F68, C71, H73, V94, L96, I109, F113, and R129. H73 was considered to function as a base that abstracts the proton of γ-HCH through its interaction with D25. Docking simulations with γ-HCH and γ-pentachlorocyclohexene suggest that 11 residues (K20, I44, L64, V94, L96, I109, A111, F113, A131, C132, and T133) are involved in the binding of these compounds and support the degradation mechanism.  相似文献   

5.
Among the active-site residues of scytalone dehydratase, the side-chain carboxamide of asparagine 131 has the greatest potential for strong electrostatic interactions. Structure-based inhibitor design aimed at enhancing interactions with this residue led to the synthesis of a series of highly potent inhibitors that have a five- or six-membered ring containing a carbonyl functionality for hydrogen bonding. To achieve a good orientation for hydrogen bonding, the inhibitors incorporate a phenyl substituent that displaces a phenylalanine residue away from the five- or six-membered rings. Without the phenyl substituent, inhibitor binding potency is diminished by three orders of magnitude. Larger Ki values of a site-directed mutant (Asn131Ala) of scytalone dehydratase in comparison to those of wild-type enzyme validate the design concept. The most potent inhibitor (Ki=15 pM) contains a tetrahydrothiophenone that can form a single hydrogen bond with the asparagine carboxamide. Inhibitors with a butyrolactam that can form two hydrogen bonds with the asparagine carboxamide demonstrate excellent in vivo fungicidal activity.  相似文献   

6.
Scytalone dehydratase is involved in the production of fungal dihydroxynaphthalene (DHN) melanin. We have isolated and characterized OSD1, a gene encoding scytalone dehydratase from the sap-staining fungus Ophiostoma floccosum by PCR-based cloning. Sequence analysis suggests that the OSD1 gene encodes a protein of 216 amino acids with a molecular weight of 24.2 kDa that shows 51-70% sequence identity to other scytalone dehydratases. The cloned OSD1 contains two introns of 76 bp and 63 bp in length, and is the longest scytalone dehydratase gene sequence so far reported. Transformation of a DHN melanin-deficient, non-pathogenic, mutant of Colletotrichum lagenarium with the OSD1 gene restored melanin production and pathogenicity. The ability of the mutant to produce the OSD1 gene product was confirmed by RT-PCR analysis. These data show that the cloned OSD1 gene product can function in the DHN melanin biosynthetic pathway in C. lagenarium.  相似文献   

7.
The linA gene from Pseudomonas paucimobilis was highly expressed in Escherichia coli, and the linA product (LinA), named γ-HCH dehydrochlorinase, was purified to homogeneity. LinA released three chloride ions per one molecule of γ-HCH. Degradation assay of halogenated compounds by purified LinA showed that the substrate specificity of LinA is very narrow.  相似文献   

8.
于清  曹志艳  董金皋 《微生物学报》2007,47(6):1013-1018
根据已知植物病原真菌黑色素生物合成相关基因scd(scytalone dehydratase)氨基酸序列保守区域设计简并引物,分别以玉米大斑病菌基因组DNA和cDNA为模板,通过PCR技术获得scd基因的同源片段,利用SMART-RACE技术和3′RACE技术获得了scd的cDNA全长序列。并根据scd基因cDNA全长序列设计基因特异性引物扩增玉米大斑病菌基因组DNA获得了该基因DNA全长。通过DNA序列和cDNA序列对比分析发现scd基因编码一个180个氨基酸的开放阅读框架,DNA序列含有两个分别为50bp和78bp的内含子。生物信息学分析表明其氨基酸序列与水稻胡麻叶斑病菌的scd基因的相似性很高。DHN黑色素生物合成途径特异性抑制剂—Carpropamid处理玉米大斑病菌,在12~24h之内可以抑制病菌分生孢子的萌发和附着胞的产生,但随着处理时间的延长抑制剂的抑制作用变弱,并且经过抑制剂处理的病菌不能侵入寄主组织或不能在寄主组织内扩展。初步明确了scd与玉米大斑病菌黑色合成途径及致病性的关系。  相似文献   

9.
以来自于巨大芽孢杆菌的细胞色素P450BM-3为研究对象,采用随机突变和饱和定点突变定向进化技术对P450BM-3进行改造,通过突变体催化靛蓝显色的特性采用活性琼脂平板分析和96微孔板相结合的高通量筛选成功获得了几个具有更高催化性能的突变体。  相似文献   

10.
11.
We explore the use of site-directed mutations of scytalone dehydratase to study inhibitor binding interactions. The enzyme is the physiological target of new fungicides and the subject of inhibitor design and optimization. X-ray structures show that potent inhibitors (K(i)'s approximately 10(-)(11) M) interact mostly with 11 amino acid side chains and, in some cases, with a single backbone amide. Fifteen site-directed mutants of the 11 enzyme residues were prepared to disrupt enzyme-inhibitor interactions, and inhibition constants for 13 inhibitors were determined to assess changes in binding potencies. The results indicate that two of the six hydrogen bonds (always present in X-ray structures of native enzyme-inhibitor complexes) are not important for inhibitor binding. The other four hydrogen bonds are important for inhibitor binding, and the strength of the individual bonds is inhibitor-dependent. Inhibitor atoms remote from the hydrogen bonds influence their strength, presumably by effecting small changes in inhibitor orientation. Several hydrophobic amino acid residues are important recognition elements for lipophilic inhibitor functionalities, which is fully consistent with X-ray structures determined from crystals of enzyme-inhibitor complexes grown at neutral pH but not with those determined from crystals grown under acidic conditions. This study of mutant enzymes complements insights from X-ray structures and structure-activity relationships of the wild-type enzyme for refining views of inhibitor recognition.  相似文献   

12.
We have employed site-directed mutagenesis to investigate the contribution of a conserved arginyl residue to the catalytic activity and cofactor affinity of D-serine dehydratase, a model pyridoxal 5'-phosphate (vitamin B6) enzyme. Replacement of R-120 in the active site peptide of D-serine dehydratase by L decreased the affinity of the enzyme for pyridoxal 5'-phosphate by 20-fold and reduced turnover by 5-8-fold. kappa cat displayed modified substrate alpha-deuterium isotope effects and altered dependence on both temperature and pH. Analysis of the pH rate profiles of DSD and the R-120----L variant indicated that R-120 interacts electrostatically with catalytically essential ionizable groups at the active site of wild type D-serine dehydratase. The decrease in cofactor affinity observed for DSD(R120L) was not accompanied by significant perturbations in the UV, CD, or 31P NMR spectrum of the holoenzyme, suggesting that the contribution of R-120 to pyridoxal phosphate affinity may be indirect or else involve an interaction with a cofactor functional group other than the 5'-phosphoryl moiety. The properties of two other site-directed variants of D-serine dehydratase indicated that the pyridoxal 5'-phosphate:K-118 Schiff base was indifferent to a small change in the shape of the side chain at position 117 (I-117----L), whereas replacement of K-118 by H resulted in undetectable levels of enzyme. A poor ability to bind cofactor may have rendered DSD(K118H) susceptible to intracellular proteolysis.  相似文献   

13.
Site-directed mutagenesis is widely used to study protein and nucleic acid structure and function. Despite recent advancements in the efficiency of procedures for site-directed mutagenesis, the fraction of site-directed mutants by most procedures rarely exceeds 50% on a routine basis and is never 100%. Hence it is typically necessary to sequence two or three clones each time a site-directed mutant is constructed. We describe a simple and robust gradient-PCR-based screen for distinguishing site-directed mutants from the starting, unmutated plasmid. The procedure can use either purified plasmid DNA or colony PCR, starting from a single colony. The screen utilizes the primer used for mutagenesis and a common outside primer that can be used for all other mutants constructed with the same template. Over 30 site-specific mutants in a variety of templates were successfully screened and all of the mutations detected were subsequently confirmed by DNA sequencing. A single base pair mismatch could be detected in an oligonucleotide of 36 bases. Detection efficiency was relatively independent of starting template concentration and the nature of the outside primer used.  相似文献   

14.
Sphingomonas paucimobilis B90A contains two variants, LinA1 and LinA2, of a dehydrochlorinase that catalyzes the first and second steps in the metabolism of hexachlorocyclohexanes (R. Kumari, S. Subudhi, M. Suar, G. Dhingra, V. Raina, C. Dogra, S. Lal, J. R. van der Meer, C. Holliger, and R. Lal, Appl. Environ. Microbiol. 68:6021-6028, 2002). On the amino acid level, LinA1 and LinA2 were 88% identical to each other, and LinA2 was 100% identical to LinA of S. paucimobilis UT26. Incubation of chiral alpha-hexachlorocyclohexane (alpha-HCH) with Escherichia coli BL21 expressing functional LinA1 and LinA2 S-glutathione transferase fusion proteins showed that LinA1 preferentially converted the (+) enantiomer, whereas LinA2 preferred the (-) enantiomer. Concurrent formation and subsequent dissipation of beta-pentachlorocyclohexene enantiomers was also observed in these experiments, indicating that there was enantioselective formation and/or dissipation of these enantiomers. LinA1 preferentially formed (3S,4S,5R,6R)-1,3,4,5,6-pentachlorocyclohexene, and LinA2 preferentially formed (3R,4R,5S,6S)-1,3,4,5,6-pentachlorocyclohexene. Because enantioselectivity was not observed in incubations with whole cells of S. paucimobilis B90A, we concluded that LinA1 and LinA2 are equally active in this organism. The enantioselective transformation of chiral alpha-HCH by LinA1 and LinA2 provides the first evidence of the molecular basis for the changed enantiomer composition of alpha-HCH in many natural environments. Enantioselective degradation may be one of the key processes determining enantiomer composition, especially when strains that contain only one of the linA genes, such as S. paucimobilis UT26, prevail.  相似文献   

15.
Using site-directed mutagenesis we have investigated the catalytic residues in a xylanase from Bacillus circulans. Analysis of the mutants E78D and E172D indicated that mutations in these conserved residues do not grossly alter the structure of the enzyme and that these residues participate in the catalytic mechanism. We have now determined the crystal structure of an enzyme-substrate complex to 108 A resolution using a catalytically incompetent mutant (E172C). In addition to the catalytic residues, Glu 78 and Glu 172, we have identified 2 tyrosine residues, Tyr 69 and Tyr 80, which likely function in substrate binding, and an arginine residue, Arg 112, which plays an important role in the active site of this enzyme. On the basis of our work we would propose that Glu 78 is the nucleophile and that Glu 172 is the acid-base catalyst in the reaction.  相似文献   

16.
There is great interest in increasing proteins’ stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt’s reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔT m = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.  相似文献   

17.
Endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has a high level of transglycosylation activity. To determine which amino acids are involved in this activity, we employed deletion analysis, as well as random and site-directed mutagenesis. Using PCR random mutagenesis, 11 mutants with greatly decreased levels of enzyme activity were isolated. Six catalytically essential amino acids were identified by site-directed mutagenesis. Mutants E173G, E175Q, D206G, and D270N had markedly reduced hydrolysis activity, while mutants V109D, E173D, and E173Q lost all enzymatic activity, indicating that Val-109 and Glu-173 are important for the catalytic function. Moreover, we isolated a random mutation that abolished the transglycosylation activity without affecting the hydrolysis activity. The Trp-216 to Arg mutation was identified, by site-directed mutagenesis, as that responsible for the loss of transglycosylation activity. While other mutants of Trp-216 showed reduced activity, mutation to another positively charged residue (Lys) also abolished the transglycosylation activity. Sequence comparison with two other endo-beta-N-acetylglucosaminidases, that possess transglycosylation activity and that have been cloned recently, reveals a high degree of identity in the N-terminal regions of the three enzymes. These results indicate that the tryptophan residue at position 216 of Endo-A has a key role in the transglycosylation.  相似文献   

18.
gamma-Hexachlorocyclohexane (gamma-HCH) is one of several highly chlorinated insecticides that cause serious environmental problems. The cellular proteins of a gamma-HCH-degrading bacterium, Sphingomonas paucimobilis UT26, were fractionated into periplasmic, cytosolic, and membrane fractions after osmotic shock. Most of two different types of dehalogenase, LinA (gamma-hexachlorocyclohexane dehydrochlorinase) and LinB (1,3,4,6-tetrachloro-1,4-cyclohexadiene halidohydrolase), that are involved in the early steps of gamma-HCH degradation in UT26 was detected in the periplasmic fraction and had not undertaken molecular processing. Furthermore, immunoelectron microscopy clearly showed that LinA and LinB are periplasmic proteins. LinA and LinB both lack a typical signal sequence for export, so they may be secreted into the periplasmic space via a hitherto unknown mechanism.  相似文献   

19.
Kemp RG  Gunasekera D 《Biochemistry》2002,41(30):9426-9430
Mammalian phosphofructokinase (PFK) has evolved by a process of tandem gene duplication and fusion to yield a protein that is more than double the size of prokaryotic PFKs. On the basis of complete conservation of active site residues in the N-terminal half of the eukaryotic enzyme with those of the bacterial PFKs, one assumes that the active site of the eukaryotic PFK is located in the N-terminal half. Again using sequence comparisons, the four allosteric ligand sites of mammalian PFK have been thought to arise from the duplicated catalytic and regulatory sites of the ancestral PFK. Previous site-directed mutagenesis studies [Li et al. (1999) Biochemistry 38, 16407-16412; Chang and Kemp (2002) Biochem. Biophys. Res. Commun. 290, 670-675] have identified the origins of the citrate and fructose 2,6-bisphosphate sites. Here, site-directed mutagenesis of two arginine residues (Arg-433 and Arg-429) of mouse phosphofructokinase is used to identify the ATP inhibitory site, and, by inference, the AMP/ADP site. Mutation of the residues to alanine reduced ATP inhibition in the case of Arg-429 and eliminated ATP inhibition in the instance of Arg-433. The Arg-433 mutant could be inhibited by citrate, and that inhibition could be reversed by fructose 2,6-bisphosphate and cyclic AMP, a high-affinity ligand for the AMP/ADP binding site. It is concluded that the two inhibitors, ATP and citrate, of mammalian PFK interact with sites that have evolved from the duplicated phosphoenolpyruvate/ADP allosteric site of the ancestral PFK. The two sites for activators, fructose 2,6-bisphosphate and AMP or ADP, have evolved from the catalytic site of the ancestral precursor.  相似文献   

20.
Penicillium griseofulvum xylanase (PgXynA) belongs to family 11 glycoside hydrolase. It exhibits unique amino acid features but its three-dimensional structure is not known. Based upon the X-ray structure of Penicillium funiculosum xylanase (PfXynC), we generated a three-dimensional model of PgXynA by homology modeling. The native structure of PgXynA displayed the overall beta-jelly roll folding common to family 11 xylanases with two large beta-pleated sheets and a single alpha-helix that form a structure resembling a partially closed right hand. Although many features of PgXynA were very similar to previously described enzymes from this family, crucial differences were observed in the loop forming the "thumb" and at the edge of the binding cleft. The robustness of the xylanase was challenged by extensive in silico-based mutagenesis analysis targeting mutations retaining stereochemical and energetical control of the protein folding. On the basis of structural alignments, modeled three-dimensional structure, in silico mutations and docking analysis, we targeted several positions for the replacement of amino acids by site-directed mutagenesis to change substrate and inhibitor specificity, alter pH profile and improve overall catalytic activity. We demonstrated the crucial role played by Ser44(PgXynA) and Ser129(PgXynA), two residues unique to PgXynA, in conferring distinct specificity to P. griseofulvum xylanase. We showed that the pH optimum of PgXynA could be shifted by -1 to +0.5 units by mutating Ser44(PgXynA) to Asp and Asn, respectively. The S44D and S44N mutants showed only slight alteration in K(m) and V(max) whereas a S44A mutant lost both pH-dependence profile and activity. We were able to produce PgXynA S129G mutants with acquired sensitivity to the Xylanase Inhibitor Protein, XIP-I. The replacement of Gln121(PgXynA), located at the start of the thumb, into an Arg residue resulted in an enzyme that possessed a higher catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号