首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique histone H2A gene of Aspergillus nidulans contains three introns   总被引:7,自引:0,他引:7  
G S May  N R Morris 《Gene》1987,58(1):59-66
  相似文献   

2.
3.
4.
De Souza CP  Osmani AH  Wu LP  Spotts JL  Osmani SA 《Cell》2000,102(3):293-302
Phosphorylation of histone H3 serine 10 correlates with chromosome condensation and is required for normal chromosome segregation in Tetrahymena. This phosphorylation is dependent upon activation of the NIMA kinase in Aspergillus nidulans. NIMA expression also induces Ser-10 phosphorylation inappropriately in S phase-arrested cells and in the absence of NIMX(cdc2) activity. At mitosis, NIMA becomes enriched on chromatin and subsequently localizes to the mitotic spindle and spindle pole bodies. The chromatin-like localization of NIMA early in mitosis is tightly correlated with histone H3 phosphorylation. Finally, NIMA can phosphorylate histone H3 Ser-10 in vitro, suggesting that NIMA is a mitotic histone H3 kinase, perhaps helping to explain how NIMA promotes chromatin condensation in A. nidulans and when expressed in other eukaryotes.  相似文献   

5.
6.
7.
8.
9.
The transport of nitrate into prokaryotic and eukaryotic cells, of considerable interest to agriculture, ecology, and human health, is carried out by members of a distinct cluster of proteins within the major facilitator superfamily. To obtain structure/function information on this important class of nitrate permeases, a collection of chemically induced mutations in the nrtA gene encoding a 12-transmembrane domain, high-affinity nitrate transporter from the eukaryote Aspergillus nidulans was isolated and characterized. This mutational analysis, coupled with protein alignments, demonstrates the utility of the approach to predicting peptide motifs and individual residues important for the movement of nitrate across the membrane. These include the highly conserved nitrate signature motif (residues 166-173) in Tm 5, the conserved charged residues Arg87 (Tm 2) and Arg368 (Tm 8), as well as the aromatic residue Phe47 (Tm 1), all within transmembrane helices. No mutations were observed in the large central loop (Lp 6/7) between Tm 6 and Tm 7. Finally, the study of a strain with a conversion of Trp481 (Tm 12) to a stop codon suggests that all 12 transmembrane domains and/or the C-terminal tail are required for membrane insertion and/or stability of NrtA.  相似文献   

10.
11.
12.
13.
K H Kim  T Akashi  I Mizuguchi  A Kikuchi 《Gene》1999,236(2):293-301
We have determined the complete nucleotide sequence of a 5544bp genomic DNA fragment from Aspergillus nidulans that encodes DNA topoisomerase II (topo II). It contains a single open reading frame of 4740bp that codes for 1579 amino acid residues with a molecular weight of 178kDa; when expressed in Escherichia coli and Saccharomyces cerevisiae the molecular weight was 180kDa. The gene (TOP2) is divided into three exons. Two introns, 54bp and 60bp in length, are located at nucleotide positions 187 and 3214 respectively. Comparison of the deduced amino acid sequence with other eukaryotic topo II sequences showed a higher degree of identity with other fungal enzymes than the human topo IIalpha. One of monoclonal antibodies raised against human topo II, 6H8, can cross-react with Aspergillus topo II.  相似文献   

14.
B Drabent  E Kardalinou  D Doenecke 《Gene》1991,103(2):263-268
The gene coding for the human H1t histone, a testis-specific H1 subtype, was isolated from a genomic library using a human somatic H1 gene as a hybridization probe. The corresponding mRNA is not polyadenylated and encodes a 206-amino-acid protein. Sequence analysis and S1 nuclease mapping of the human H1t gene reveals that the 5' flanking region contains several consensus promoter elements, as described for somatic, i.e., S-phase-dependent H1 subtype genes. The 3' region includes the stem-and-loop structure necessary for mRNA processing of most histone mRNAs. Northern blot analysis with RNAs from different human tissues and cell lines revealed that only testicular RNA hybridized with this gene probe.  相似文献   

15.
16.
Mammals possess a unique signaling system based on the proteolytic mechanism of a disintegrin and metalloproteinases (ADAMs) on the cell surface. We found two genes encoding ADAMs in Aspergillus oryzae and named them admA and admB. We produced admA and admB deletion strains to elucidate their biological function and clarify whether fungal ADAMs play a similar role as in mammals. The ?admA?admB and ?admB strains were sensitive to cell wall-perturbing agents, congo red, and calcofluor white. Moreover, the two strains showed significantly increased weights of total alkali-soluble fractions from the mycelial cell wall compared to the control strain. Furthermore, ?admB showed MpkA phosphorylation at lower concentration of congo red stimulation than the control strain. However, the MpkA phosphorylation level was not different between ?admB and the control strain without the stimulation. The results indicated that A. oryzae AdmB involved in the cell wall integrity without going through the MpkA pathway.  相似文献   

17.
Carboxypeptidase Y (CPY) has been used as a maker enzyme for investigations on intracellular transport of vacuolar proteins and on vacuolar biogenesis in Saccharomyces cerevisiae. We describe the cloning and characterization of the CPY homologue encoding gene (cpyA) from the filamentous fungus Aspergillus nidulans. The cpyA gene has one intron and encodes a protein with 552 amino acids containing a putative signal sequence and pro-sequence. The predicted CpyA protein is highly similar in sequence with carboxypeptidases from several yeast species and contains a catalytic triad (Asp-His-Ser) like that of serine carboxypeptidase. The cpyA disruptant cells showed reduced levels of intracellular carboxypeptidase. These results suggest that the cpyA gene encodes a vacuolar carboxypeptidase in A. nidulans.  相似文献   

18.
19.
20.
Mitochondria form a dynamic network of interconnected tubes in the cells of Saccharomyces cerevisiae or filamentous fungi such as Aspergillus nidulans, Neurospora crassa, or Podospora anserina. The dynamics depends on the separation of mitochondrial fragments, their movement throughout the cell, and their subsequent fusion with the other parts of the organelle. Interestingly, the microtubule network is required for the distribution in N. crassa and S. pombe, while S. cerevisiae and A. nidulans appear to use the actin cytoskeleton. We studied a homologue of S. cerevisiae Mdm10 in A. nidulans, and named it MdmB. The open reading frame is disrupted by two introns, one of which is conserved in mdm10 of P. anserina. The MdmB protein consists of 428 amino acids with a predicted molecular mass of 46.5 kDa. MdmB shares 26% identical amino acids to Mdm10 from S. cerevisiae, 35% to N. crassa, and 32% to the P. anserina homologue. A MdmB-GFP fusion protein co-localized evenly distributed along mitochondria. Extraction of the protein was only possible after treatment with a non-ionic and an ionic detergent (1% Triton X-100; 0.5% SDS) suggesting that MdmB was tightly bound to the mitochondrial membrane fraction. Deletion of the gene in A. nidulans affected mitochondrial morphology and distribution at 20 degrees C but not at 37 degrees C. mdmB deletion cells contained two populations of mitochondria at lower temperature, the normal tubular network plus some giant, non-motile mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号