首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The composition of bacterial communities associated with four diatom species was monitored during isolation and cultivation of algal cells. Strong shifts in the associated communities, linked with an increase in the numbers of phylotypes belonging to members of the Gammaproteobacteria, were observed during cultivation.  相似文献   

2.
Microbial communities in hot pepper (Capsicum annuum L.) cultivation fields under different cultivation methods were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis. Rhizosphere soil and leaf samples were collected from control, conventional and nature-friendly cultivation fields between May and July, 2009. Two Bacillus subtilis strains were applied to nature-friendly cultivation fields as biocontrol agents during the sampling period. Relative abundances of bacteria and plant pathogenic fungi related T-RFs were also measured to monitor the effect of biocontrol agents on potential plant pathogenic fungi. In the principal component analysis (PCA) based on T-RFLP profiles, the microbial communities from rhizosphere soil samples in July, including bacteria and fungi, showed distinct difference between nature-friendly cultivation fields and other cultivation fields. However, there was no correlation between cultivation methods and leaf microbial communities at any sampling period. Changes in the abundance of bacteria related T-RF in the rhizosphere of nature-friendly cultivation fields were observed clearly two months after application of biocontrol agent, while the abundance of plant pathogenic fungi related T-RFs significantly decreased.  相似文献   

3.
Yang  Mei  Zou  Jie  Liu  Chengyi  Xiao  Yujun  Zhang  Xiaoping  Yan  Lijuan  Ye  Lei  Tang  Ping  Li  Xiaolin 《Annals of microbiology》2019,69(5):553-565

Here, we investigated the influence of Chinese white truffle (Tuber panzhihuanense) symbioses on the microbial communities associated with Corylus avellana during the early development stage of symbiosis. The microbial communities associated with ectomycorrhizae, and associated with roots without T. panzhihuanense colonization, were determined via high-throughput sequencing of bacterial 16S rRNA genes and fungal ITS genes. Microbial community diversity was higher in the communities associated with the ectomycorrhizae than in the control treatment. Further, bacterial and fungal community structures were different in samples containing T. panzhihuanense in association with C. avellana compared to the control samples. In particular, the bacterial genera Rhizobium, Pedomicrobium, and Herbiconiux were more abundant in the ectomycorrhizae, in addition to the fungal genus Monographella. Moreover, there were clear differences in some physicochemical properties among the rhizosphere soils of the two treatments. Statistical analyses indicated that soil properties including exchangeable magnesium and exchangeable calcium prominently influenced microbial community structure. Lastly, inference of bacterial metabolic functions indicated that sugar and protein metabolism functions were significantly more enriched in the communities associated with the ectomycorrhizae from C. avellana mycorrhized with T. panzhihuanense compared to communities from roots of cultivated C. avellana without T. panzhihuanense. Taken together, these results highlight the interactions among ectomycorrhizal fungi, soil properties, and microbial communities that are associated with host plants and further our understanding of the ecology and cultivation of the economically important T. panzhihuanense truffles.

  相似文献   

4.
The microbial communities associated with marine sediments are critical for ecosystem function yet remain poorly characterized. While culture-independent (CI) techniques capture the broadest perspective on community composition, culture-dependent (CD) methods can select for low abundance taxa that are missed using CI approaches. This study aimed to assess microbial diversity in tropical marine sediments at five shallow-water sites in Belize using both CD and CI techniques. The CD methods captured approximately 3% of the >800 genera detected across all sites using the CI approach. Additionally, 39 genera were only detected in culture, revealing rare taxa that were missed with the CI approach. Significantly different communities were detected across sites, with rare taxa playing an important role in distinguishing among communities. This study provides important baseline data describing shallow-water sediment microbial communities, evidence that standard cultivation techniques may be more effective than previously recognized, and the first steps towards identifying new taxa that are amenable to agar plate cultivation.  相似文献   

5.
The rhizosphere constitutes a complex niche that may be exploited by a wide variety of bacteria. Bacterium–plant interactions in this niche can be influenced by factors such as the expression of heterologous genes in the plant. The objective of this work was to describe the bacterial communities associated with the rhizosphere and rhizoplane regions of tobacco plants, and to compare communities from transgenic tobacco lines (CAB1, CAB2 and TRP) with those found in wild-type (WT) plants. Samples were collected at two stages of plant development, the vegetative and flowering stages (1 and 3 months after germination). The diversity of the culturable microbial community was assessed by isolation and further characterization of isolates by amplified ribosomal RNA gene restriction analysis (ARDRA) and 16S rRNA sequencing. These analyses revealed the presence of fairly common rhizosphere organisms with the main groups Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacilli. Analysis of the total bacterial communities using PCR-DGGE (denaturing gradient gel electrophoresis) revealed that shifts in bacterial communities occurred during early plant development, but the reestablishment of original community structure was observed over time. The effects were smaller in rhizosphere than in rhizoplane samples, where selection of specific bacterial groups by the different plant lines was demonstrated. Clustering patterns and principal components analysis (PCA) were used to distinguish the plant lines according to the fingerprint of their associated bacterial communities. Bands differentially detected in plant lines were found to be affiliated with the genera Pantoea, Bacillus and Burkholderia in WT, CAB and TRP plants, respectively. The data revealed that, although rhizosphere/rhizoplane microbial communities can be affected by the cultivation of transgenic plants, soil resilience may be able to restore the original bacterial diversity after one cycle of plant cultivation.  相似文献   

6.

Background

Bt-maize is a transgenic variety of maize expressing the Cry toxin from Bacillus turingiensis. The potential accumulation of the relative effect of the transgenic modification and the cry toxin on the rhizobacterial communities of Bt-maize has been monitored over a period of four years.

Methodology/Principal Findings

The accumulative effects of the cultivation of this transgenic plant have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The obtained sequences were subjected to taxonomic, phylogenetic and taxonomic-independent diversity studies. The results obtained were consistent, indicating that variations detected in the rhizobacterial community structure were possibly due to climatic factors rather than to the presence of the Bt-gene. No variations were observed in the diversity estimates between non-Bt and Bt-maize.

Conclusions/Significance

The cultivation of Bt-maize during the four-year period did not change the maize rhizobacterial communities when compared to those of the non-Bt maize. This is the first study to be conducted with Bt-maize during such a long cultivation period and the first evaluation of rhizobacterial communities to be performed in this transgenic plant using Next Generation Sequencing.  相似文献   

7.
Due to its overexploitation during the past century, Nothofagus nervosa is currently included in conservation and domestication programs, in which ectomycorrhizas play an important role. We aimed to describe the abundance and diversity of ectomycorrhizal fungi (EcMF) in both domesticated and naturally established N. nervosa specimens, and to analyse the influence of age, seasonality and forest management on EcMF communities. The occurrence of arbuscular mycorrhizas (AM) and dark septate endophytes (DSE) was also investigated. Fungal diversity and taxonomic identification were assessed by morphotyping and subsequent ITS-rDNA sequencing. Plant age, seasonality and forest management influenced EcMF communities. Colonization rates were higher than 90 % in all the specimens, and were significantly higher in mature trees and in autumn. The highest EcMF richness and diversity values were registered in domesticated specimens and in autumn. Most EcMF were basidiomycetes, belonging mainly to the Cortinariaceae and Tricholomataceae. Arbuscular mycorrhizas were not detected, while DSE were present within N. nervosa roots. Our results and previously published reports showed that some EcMF are capable of colonizing different Nothofagus species. In addition, the EcMF described in natural ecosystems are different from those colonizing N. nervosa during its cultivation in the nursery. These results improve our understanding of key factors affecting EcMF communities associated with Nothofagus in native forests and nurseries (age, season, forest management, cultivation techniques), and this information is relevant for improving domestication programs.  相似文献   

8.
The endophytic bacterial communities of the three most important rice varieties cultivated in Uruguay were compared by a multiphasic approach. Leaves of mature plants grown in field experiments for two consecutive crop seasons were studied. No significant differences were found in the heterotrophic bacterial density for the three varieties. Pantoea ananatis and Pseudomonas syringae constituted 51% of the total of the isolates. These species were always present regardless of the variety or the season. Molecular analysis based on the 16S rRNA gene was performed by terminal restriction fragment length polymorphism (T-RFLP) and cloning. T-RFLP analysis revealed that bacterial communities grouped according to the variety, although the three varieties presented communities that showed 74% or higher similarities. Brevundimonas, the dominant genus in the clone library (18% of the clones), which might be present in all varieties according to T-RFLP profiles, was not recovered by cultivation. Conversely, bacteria from the genus Pseudomonas were not detected in the clone library. These results indicate that communities established in leaves of physiologically different rice varieties were highly similar and composed by a reduced group of strongly associated and persistent bacteria that were partially recovered by cultivation.  相似文献   

9.
采用传统平扳分离培养方法和PCR—DGGE技术研究了水稻秸秆腐解复合菌系RSS-4在腐解稻秆过。程中菌种区系变化情况。结果表明:平板分离培养方法显示,在稻秆腐解过程中,微生物的数量呈现出先升后降的变化趋势,在整个腐解过程中细菌的数量占优势;DGGE图谱显示,至少有12种细菌和18种真菌的近缘种参与到稻秆的腐解过程。在其腐解过程中,不同腐解阶段真菌的组成呈现出多样性,数量变化差异也较大:细菌DGGE图谱中的条带1、9、10等以及真菌DGGE图谱中的条带8、9、13等为优势菌株,它们贯穿于稻秤腐解的整个过程;细菌中的条带12以及真菌中的条带4在腐解的前期起作用,而后迅速消失;细菌中的条带3、11等以及真菌中的条带3、10等在腐解的后期才出现而起作用;而细菌中的条带2以夏真菌中的条带1、5等仅出现在腐解的莱一时期。  相似文献   

10.
This paper reviews research in microbial diversity associated with ascidians (commonly known as sea squirts). The application of culture-dependent and culture-independent techniques is introduced in detail and these methods are analyzed for their advantages and limitations. Because of the limitations of available media and cultivation conditions, culture-dependent methods can only reveal a limited portion of the microorganisms in ascidians. However, the acquisition of typical microbial community members in culture remains a valuable resource for exploring their bioactive potential and relationships with the ascidian hosts. The application of metagenomic library methods has greatly accelerated ascidian metabolites studies. The next-generation sequencing techniques have led to the acquisition of an unprecedented quantity of ascidian microorganism data, providing the most comprehensive information about ascidian microbial diversity. Ascidians provide unique ecological niches that harbor an unexpected diversity of microorganisms different from planktonic bacteria in the local seawater. Microbial communities associated with ascidians tend to be species-specific and tissue-specific. Different tissue of the same ascidian may be associated with different microbial communities.  相似文献   

11.
不同种植年限香榧根际土壤微生物多样性   总被引:3,自引:0,他引:3  
为探明不同种植年限对香榧根际土壤微生物群落特征的影响,采用高通量测序技术,分析种植5 a、10 a和15 a香榧根际土壤细菌、真菌的群落结构和多样性特征.结果表明: 在种植15 a的香榧土壤中细菌Chao1指数、ACE指数和Shannon指数显著降低,Simpson指数无显著变化.NMDS分析显示,种植年限对细菌群落结构变化有显著影响,而种植5 a和10 a香榧林地土壤具有相似的细菌群落.细菌相对丰度、多样性以及群落结构(基本上由变形菌、放线菌、酸杆菌和绿弯菌组成)的变化与有机质、C/N、全氮呈极显著相关.香榧根际土壤真菌Chao1指数和ACE指数随种植年限的增加显著降低,Shannon指数和Simpson指数在种植10 a香榧林地中较高.真菌NMDS分析显示,相同种植年限土壤真菌群落聚在一起,不同种植年限之间能明显分开.真菌优势菌群主要包括子囊菌门、担子菌门、接合菌门.有机质是影响真菌丰富度、多样性和群落结构变化的主要因子.综上,香榧根际土壤微生物群落随种植年限不同而发生明显变化,种植年限、C/N、土壤全氮和有机质含量是影响香榧根际土壤微生物群落结构的主要因子.  相似文献   

12.
The arbuscular mycorrhizal fungal (AMF) communities associated with cacao in Venezuela were studied. The species of AMF spores present in sixteen cacao plantations and in one nursery were isolated and identified when possible. The spore densities, species richness, diversity, Shannon-Wiener diversity index and dominance concentration index for the AMF communities were calculated. Acaulospora scrobiculata was associated with cacao plants in all study sites. No Scutellospora spp. were found in the analyzed soils. The spore number found in cacao plantations was relatively lower as compared with other tropical crops (38 spores 100 g–1 soil up to 1674). Soils that were cultivated with cacao for more than 40 years showed the lowest spore numbers. Species richness and diversity of AMF communities associated with cacao, were negatively correlated with available P in soils. The Shannon-Wiener diversity index was positively correlated with soil organic matter. These results indicate that the traditional cacao cultivation practices used in Venezuela, maintain mycorrhizal infection on cacao plants. The diversity of the AMF community is similar to that found in natural undisturbed ecosystems from Venezuela.  相似文献   

13.
Human activities such as deforestation, cultivation, and overgrazing have contributed to the destruction of forest ecosystems in the upper Minjiang River basin for a long time, which has led to the reduction in forest coverage and biodiversity. On the Giant Panda Corridor of Tudiling in this basin, the effects of the existing disturbance regimes on plant communities after the vegetation restoration in the 1980s were assessed, and the community composition, the species diversity and their relationships with environmental factors significantly associated with the disturbance were analyzed using the transect sampling method, the two-way indicator species analysis (TWINSPAN) and the detrended canonical correspondence analysis (DCCA). The results were as follows: communities could be classified into six types, and species were clustered into four functional groups (responsive to disturbance, retarded disturbance, resistant to intermediate disturbance, and resistant to heavy disturbance) based on both TWINSPAN and DCCA. DCCA with species composition of plots is similar to that with species diversity of plots. The communities were separated into distinct groups along the DCCA axis, and this pattern was significantly correlated with environmental factors. Elevation differences, shape, slope, distance to roads, and the number of paths in the plots had an evident influence on the distribution of the species and communities. Environmental factors including slope, distance to roads, and the number of paths revealed the gradient of disturbance among the communities along the DCCA axis. High disturbance intensity caused significantly lower species diversity and inhibited the regeneration of vegetation compared with the more diverse undisturbed communities. Artificial restoration was more effective than natural restoration in maintaining high species diversity. The process of succession was inhibited in natural restoration because of the failure of tree establishment, growth, and survival during regeneration.  相似文献   

14.
选取青藏高原三江源区"黑土滩"型退化草地上建植的人工草地为研究对象,对不同建植年限人工草地植物群落及其各功能群的物种组成、平均高度、盖度和地上生物量及植物多样性等进行实地调查和对比分析,探讨"黑土滩型"退化草地在人工恢复过程中植物群落组成和多样性变化,以期回答人工恢复的草地植物群落何时才能接近天然草地、人工恢复的时间阈值应为多长等问题,从而为三江源区"黑土滩"型退化草地的恢复重建提供科学的理论指导。研究结果表明:草地恢复前5年内,禾本科植物的数量大量增加,植物群落的高度增加了847.6%,植物群落盖度增加了134.5%;不同恢复年限的草地植物群落的多样性指数都有相似的变化趋势,恢复8年后植物群落组成达到阶段性的稳定状态,在恢复时间达16—18年后,逐渐向更稳定的状态转化;恢复18年的草地与天然草地植物群落的Jaccard及Sorensen相似度指数分别为0.596、0.747,Cody差异度指数为9.5。由此可见,建植人工草地的方式恢复退化草地,可在建植8年后达较好的恢复效果;恢复时间达16年以上的人工草地采取适度的调控措施,有利于其向天然草地恢复演替;建植18年的人工草地物种组成情况与天然草地最接近,但仍有差异。因此,"黑土滩"型退化草地的人工促进恢复,到未退化的状态至少需要18年以上。  相似文献   

15.
Fungal endophyte communities are poorly investigated in extreme habitats such as deserts. We used cultivation and Sanger sequencing to investigate the effects of environmental variables on the endophytic fungal communities of eight Iranian desert plants. Host species was the main factor shaping the endophyte composition, while soil type additionally affected endophytes of above- and below-ground organs. Redundancy analysis showed that soil pH and electric conductivity determine fungal endophyte communities in plants in dry and saline soils. In a follow-up experiment, we showed that these endophytes could be used in crop production under salinity/drought stress and as biocontrol agents. Although compared to other ecosystems, the endophytic fungi associated with the studied Iranian desert plants are of low diversity, our results suggest that they probably play an essential role in the survival of their hosts. Further investigation is necessary to evaluate the potential benefits and applicability of such endophytes in agricultural practices in drylands.  相似文献   

16.
The prospect of using constructed communities of microalgae in algal cultivation was confirmed in this study. Three different algal communities, constructed of diatoms (Diatom), green algae (Green), and cyanobacteria (Cyano), each mixed with a natural community of microalgae were cultivated in batch and semi‐continuous mode and fed CO2 or cement flue gas (12–15% CO2). Diatom had the highest growth rate but Green had the highest yield. Changes in the community composition occurred throughout the experiment. Green algae were the most competitive group, while filamentous cyanobacteria were outcompeted. Euglenoids, recruited from scarce species in the natural community became a large part of the biomass in semi‐steady state in all communities. High temporal and yield stability were demonstrated in all communities during semi‐steady state. Valuable products (lipids, proteins, and carbohydrates) comprised 61.5 ± 5% of ash‐free biomass and were similar for the three communities with lipids ranging 14–26% of dry mass (DM), proteins (15–28% DM) and carbohydrates (9–23% DM). Our results indicate that culture functions (stability, biomass quality) were maintained while dynamic changes occurred in community composition. We propose that a multispecies community approach can aid sustainability in microalgal cultivation, through complementary use of resources and higher culture stability.  相似文献   

17.
Wang Y J  Tao J P  Zhang W Y  Zang R G  Ding Y  Li Y  Wang W 《农业工程》2006,26(11):3525-3532
Human activities such as deforestation, cultivation, and overgrazing have contributed to the destruction of forest ecosystems in the upper Minjiang River basin for a long time, which has led to the reduction in forest coverage and biodiversity. On the Giant Panda Corridor of Tudiling in this basin, the effects of the existing disturbance regimes on plant communities after the vegetation restoration in the 1980s were assessed, and the community composition, the species diversity and their relationships with environmental factors significantly associated with the disturbance were analyzed using the transect sampling method, the two-way indicator species analysis (TWINSPAN) and the detrended canonical correspondence analysis (DCCA). The results were as follows: communities could be classified into six types, and species were clustered into four functional groups (responsive to disturbance, retarded disturbance, resistant to intermediate disturbance, and resistant to heavy disturbance) based on both TWINSPAN and DCCA. DCCA with species composition of plots is similar to that with species diversity of plots. The communities were separated into distinct groups along the DCCA axis, and this pattern was significantly correlated with environmental factors. Elevation differences, shape, slope, distance to roads, and the number of paths in the plots had an evident influence on the distribution of the species and communities. Environmental factors including slope, distance to roads, and the number of paths revealed the gradient of disturbance among the communities along the DCCA axis. High disturbance intensity caused significantly lower species diversity and inhibited the regeneration of vegetation compared with the more diverse undisturbed communities. Artificial restoration was more effective than natural restoration in maintaining high species diversity. The process of succession was inhibited in natural restoration because of the failure of tree establishment, growth, and survival during regeneration.  相似文献   

18.
Barriuso J  Marín S  Mellado RP 《PloS one》2011,6(11):e27558

Background

Glyphosate is a herbicide that is liable to be used in the extensive cultivation of glyphosate-tolerant cultivars. The potential accumulation of the relative effect of glyphosate on the rhizobacterial communities of glyphosate-tolerant maize has been monitored over a period of three years.

Methodology/Principal Findings

The composition of rhizobacterial communities is known to vary with soil texture, hence, the analyses have been performed in two agricultural fields with a different soil texture. The accumulative effects of glyphosate have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The relative composition of the rhizobacterial communities does vary in each field over the three-year period. The overall distribution of the bacterial phyla seems to change from one year to the next similarly in the untreated and glyphosate-treated soils in both fields. The two methods used to estimate bacterial diversity offered consistent results and are equally suitable for diversity assessment.

Conclusions/Significance

The glyphosate treatment during the three-year period of seasonal cultivation in two different fields did not seem to significantly change the maize rhizobacterial communities when compared to those of the untreated soil. This may be particularly relevant with respect to a potential authorisation to cultivate glyphosate-tolerant maize in the European Union.  相似文献   

19.
Fruiting bodies of fungi constitute an important resource for thousands of other taxa. The structure of these diverse assemblages has traditionally been studied with labour‐intensive methods involving cultivation and morphology‐based species identification, to which molecular information might offer convenient complements. To overcome challenges in DNA extraction and PCR associated with the complex chemical properties of fruiting bodies, we developed a pipeline applicable for extracting amplifiable total DNA from soft fungal samples of any size. Our protocol purifies DNA in two sequential steps: (a) initial salt–isopropanol extraction of all nucleic acids in the sample is followed by (b) an extra clean‐up step using solid‐phase reversible immobilization (SPRI) magnetic beads. The protocol proved highly efficient, with practically all of our samples—regardless of biomass or other properties—being successfully PCR‐amplified using metabarcoding primers and subsequently sequenced. As a proof of concept, we apply our methods to address a topical ecological question: is host specificity a major characteristic of fungus‐associated communities, that is, do different fungus species harbour different communities of associated organisms? Based on an analysis of 312 fungal fruiting bodies representing 10 species in five genera from three orders, we show that molecular methods are suitable for studying this rich natural microcosm. Comparing to previous knowledge based on rearing and morphology‐based identifications, we find a species‐rich assemblage characterized by a low degree of host specialization. Our method opens up new horizons for molecular analyses of fungus‐associated interaction webs and communities. Fruiting bodies of fungi constitute an important resource for thousands of other taxa. The structure of these diverse assemblages has traditionally been studied with labour‐intensive methods involving cultivation and morphology‐based species identification, to which molecular information might offer convenient complements. To overcome challenges in DNA extraction and PCR associated with the complex chemical properties of fruiting bodies, we developed a pipeline applicable for extracting amplifiable total DNA from soft fungal samples of any size. Our protocol purifies DNA in two sequential steps: (a) initial salt–isopropanol extraction of all nucleic acids in the sample is followed by (b) an extra clean‐up step using solid‐phase reversible immobilization (SPRI) magnetic beads. The protocol proved highly efficient, with practically all of our samples—regardless of biomass or other properties—being successfully PCR‐amplified using metabarcoding primers and subsequently sequenced. As a proof of concept, we apply our methods to address a topical ecological question: is host specificity a major characteristic of fungus‐associated communities, that is, do different fungus species harbour different communities of associated organisms? Based on an analysis of 312 fungal fruiting bodies representing 10 species in five genera from three orders, we show that molecular methods are suitable for studying this rich natural microcosm. Comparing to previous knowledge based on rearing and morphology‐based identifications, we find a species‐rich assemblage characterized by a low degree of host specialization. Our method opens up new horizons for molecular analyses of fungus‐associated interaction webs and communities.  相似文献   

20.
The body shape of a species is associated with its evolutionary history and can reflect behavioural peculiarities related to the ecological niche of each species. Morphology can characterise the morphometric niche of species and can be represented as body shape points within a morphometric universe. This information can be to calculate the morphometric diversity of communities through hypervolume metrics, and the hole sizes that remain in the morphometric hypervolume, which are empty areas with no species. Such holes may be ‘natural’ or caused by a local extinction. In this study, we evaluate the ecological community of dung beetles through the lens of morphometric diversity. We evaluated 38 dung beetle species from 30 subtropical communities in southern Brazil sampled in the summer of 2015, including 15 forest remnant communities from the Atlantic Forest and 15 communities from adjacent maize cultivations. The shape of 495 dung beetle specimens was measured using geometric morphometric and hypervolume techniques to calculate the morphometric diversity and the hole size of each of the 30 communities. We found that the taxonomic diversity positively correlated with the morphometric diversity and negatively correlated with the size of the holes. We also found that forest communities had higher values of morphometric diversity and smaller holes in the hypervolume than the maize cultivation communities, suggesting that local extinction may reduce community body shape spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号