首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water level fluctuations are important modulators of speciation processes in tropical lakes, in that they temporarily form or break down barriers to gene flow among adjacent populations and/or incipient species. Time estimates of the most recent major lowstands of the three African Great Lakes are thus crucial to infer the relative timescales of explosive speciation events in cichlid species flocks. Our approach combines geological evidence with genetic divergence data of cichlid fishes from the three Great East African Lakes derived from the fastest-evolving mtDNA segment. Thereby, we show for each of the three lakes that individuals sampled from several populations which are currently isolated by long geographic distances and/or deep water form clusters of equally closely related haplotypes. The distribution of identical or equally closely related haplotypes in a lake basin allows delineation of the extent of lake level fluctuations. Our data suggest that the same climatic phenomenon synchronized the onset of genetic divergence of lineages in all three species flocks, such that their most recent evolutionary history seems to be linked to the same external modulators of adaptive radiation. A calibration of the molecular clock of the control region was elaborated by gauging the age of the Lake Malawi species flock through the divergence among the utaka-cichlid and the mbuna-cichlid lineages to minimally 570,000 years and maximally 1 Myr. This suggests that the low-lake-level period which established the observed patterns of genetic relatedness dates back less than 57,000 years, probably even to 17,000-12,400 years ago, when Lake Victoria dried up and Lakes Malawi and Tanganyika were also low. A rapid rise of all three lakes about 11,000 years ago established the large-scale population subdivisions observed today. Over that period of time, a multitude of species originated in Lakes Malawi and Victoria with an impressive degree of morphological and ecological differentiation, whereas the Tanganyikan taxa that were exposed to the same habitat changes hardly diverged ecologically and morphologically. Our findings also show that patterns of genetic divergences of stenotopic organisms provide valuable feedback on geological and sedimentological time estimates for lake level changes.  相似文献   

2.
African cichlid fish: a model system in adaptive radiation research   总被引:9,自引:0,他引:9  
The African cichlid fish radiations are the most diverse extant animal radiations and provide a unique system to test predictions of speciation and adaptive radiation theory. The past few years have seen major advances in the phylogenetics, evolutionary biogeography and ecology of cichlid fish. Most of this work has concentrated on the most diverse radiations. Unfortunately, a large number of small radiations and 'non-radiations' have been overlooked, potentially limiting the contribution of the cichlid system to our understanding of speciation and adaptive radiation. I have reviewed the literature to identify 33 intralacustrine radiations and 76 failed radiations. For as many as possible I collected information on lake size, age and phylogenetic relationships. I use these data to address two questions: (i) whether the rate of speciation and the resulting species richness are related to temporal and spatial variation in ecological opportunity and (ii) whether the likelihood of undergoing adaptive radiation is similar for different African cichlid lineages. The former is a key prediction of the ecological theory of adaptive radiation that has been presumed true but remains untested for cichlid radiations. The second is based on the hypothesis that the propensity of cichlids to radiate is due to a key evolutionary innovation shared by all African cichlids. The evidence suggests that speciation rate declines through time as niches get filled up during adaptive radiation: young radiations and early stages of old radiations are characterized by high rates of speciation, whereas at least 0.5 Myr into a radiation speciation becomes a lot less frequent. The number of species in cichlid radiations increases with lake size, supporting the prediction that species diversity increases with habitat heterogeneity, but also with opportunity for isolation by distance. Finally, the data suggest that the propensity to radiate within lakes is a derived property that evolved during the evolutionary history of some African cichlids, and the appearance of which does not coincide with the appearance of proposed key innovations in morphology and life history.  相似文献   

3.
 Cichlid fishes of the East African Rift Valley lakes constitute an important model of adaptive radiation. Explosive speciation in the Great Lakes, in some cases as recently as 12 400 years ago, generated large species flocks that have been the focus of evolutionary studies for some time. The studies have, however, been hampered by the paucity of biochemical markers for phylogenetic reconstruction. Here, we describe a set of markers which should help to alleviate this problem. They are the class I genes of the major histocompatibility complex. We provide evidence for the existence of at least 17 class I loci in cichlid fishes, and for extensive polymorphism of three of these loci. Since the polymorphism has a trans-species character, it will be possible to use it in investigating the founding events of the individual species. The sequences of the cichlid class I fishes support the monophyly of actinopterygian fish on the one hand, and of tetrapods on the other. Received: 4 November 1996 / Revised: 19 December 1996  相似文献   

4.
Geoffrey Fryer 《Hydrobiologia》1991,211(2):137-146
Lakes Baikal, Tanganyika and Malawi have similar origins, are physiographically similar, and of similar size. The hydrological regime of Baikal is, however, very different from that which prevails in its African sisters. Apart from being much cooler, it differs fundamentally in being oxygenated to all depths while the two great African rift lakes possess only a relatively thin oxygenated surface layer and have vast oxygenless, and therefore azoic, abyssal regions. Nevertheless, like Baikal, they have rich endemic faunas.That these faunas originated largely by intralacustrine speciation and not by multiple invasion is now well established. They provide some of the world's most spectacular examples of species flocks, and some groups display what has been aptly described as explosive speciation. Certain features, and especially the adaptive radiation, of some of the groups involved, are noted. Comparisons between lakes are illuminating. Some species flocks, such as those of amphipods, sponges and turbellarians of Baikal and the atyid prawns and potamid crabs of Tanganyika, have no counterparts in the other lakes. Other groups, such as the prosobranch gastropods, ostracods and harpacticoid copepods of Baikal and Tanganyika, and the fishes of all three, involve representatives of the same major group, though often of different families or even higher taxonomic categories.That allopatric speciation has been involved is universally acknowledged but the problems posed by species multiplication in deep water in L. Baikal have led to suggestions that sympatric speciation could have played a part. Notwithstanding the difficulties, it is suggested that the process can be explained without invoking the assistance of the sympatric model.The faunas of these lakes provide immense fields for investigation and enormous intellectual challenges. While each is an entity in itself, comparative studies may be particularly enlightening.The substance of this paper was presented as a lecture at the First International Baikal Vereshchagin Conference held in Listvyanka, Irkutsk Region, U.S.S.R. in October 1989.  相似文献   

5.
The three largest water bodies of East Africa, Lake Victoria, Tanganyika, and Malawi contain an estimated number of 2,000 endemic cichlid fish species, in addition, to a mostly uncounted wealth of invertebrates. While the terrestrial diversity is reasonably well protected, as economic and touristic interests coincide with biological conservation strategies, this is not the case for most African lakes and rivers. Nonetheless, it must be promoted that these aquatic ecosystems also deserve protection. Conservation strategies for aquatic biota have so far been the same as for terrestrial environments, i.e., by declaring biodiversity hotspots national parks. Such parks also contain rivers and lake shores. Here, I argue that it seems questionable that this strategy will work, given strong micro-geographic structure of the species flocks and the great degree of local endemism. I suggest a novel strategy for protecting African Lake communities that accounts for local endemism, derived from recent molecular phylogenetic and phylogeographic studies on East African cichlid fishes. While connectivity is the major problem for terrestrial and marine national parks, to ensure a large enough effective population size of the protected animals, this is not the case in most taxa of African rivers and lakes, where local endemism prevails. For example, most littoral cichlid species are subdivided into numerous distinct “color morphs” with restricted distribution, and unlike marine fishes with planktonic larvae display brood care with small offspring numbers. It is argued that the establishment of “micro-scale protected areas,” a large number of small stretches of strictly protected coast line, each only some hundreds of meters long, is likely to work best to preserve the littoral communities in African lakes. Such protected zones can sustain a reasonably effective population size of littoral species, serve as protected spawning ground or nursery area for pelagic species, and at the same time re-seed neighboring populations that are exploited continuously. As long-term stability of littoral fishing grounds is in the immediate interest of village communities, such small protected areas should be managed and controlled by the local communities themselves, and supervised by governmental institutions.  相似文献   

6.
Lake Tanganyika, the oldest of the East African Great Lakes, harbors the ecologically, morphologically, and behaviorally most complex of all assemblages of cichlid fishes, consisting of about 200 described species. The evolutionary old age of the cichlid assemblage, its extreme degree of morphological differentiation, the lack of species with intermediate morphologies, and the rapidity of lineage formation have made evolutionary reconstruction difficult. The number and origin of seeding lineages, particularly the possible contribution of riverine haplochromine cichlids to endemic lacustrine lineages, remains unclear. Our phylogenetic analyses, based on mitochondrial DNA sequences of three gene segments of 49 species (25% of all described species, up to 2,400 bp each), yield robust phylogenies that provide new insights into the Lake Tanganyika adaptive radiation as well as into the origin of the Central- and East-African haplochromine faunas. Our data suggest that eight ancient African lineages may have seeded the Tanganyikan cichlid radiation. One of these seeding lineages, probably comprising substrate spawning Lamprologus-like species, diversified into six lineages that evolved mouthbrooding during the initial stage of the radiation. All analyzed haplochromines from surrounding rivers and lakes seem to have evolved within the radiating Tanganyikan lineages. Thus, our findings contradict the current hypothesis that ancestral riverine haplochromines colonized Lake Tanganyika to give rise to at least part of its spectacular endemic cichlid species assemblage. Instead, the early phases of the Tanganyikan radiation affected Central and East African rivers and lakes. The haplochromines may have evolved in the Tanganyikan basin before the lake became a hydrologically and ecologically closed system and then secondarily colonized surrounding rivers. Apparently, therefore, the current diversity of Central and East African haplochromines represents a relatively young and polyphyletic fauna that evolved from or in parallel to lineages now endemic to Lake Tanganyika.  相似文献   

7.
The species flocks of cichlid fishes in the East African Lakes Tanganyika, Malawi and Victoria are prime examples of adaptive radiation and explosive speciation. Several hundreds of endemic species have evolved in each of the lakes over the past several thousands to a few millions years. Sexual selection via colour-assortative mating has often been proposed as a probable causal factor for initiating and maintaining reproductive isolation. Here, we report the consequences of human-mediated admixis among differentially coloured populations of the endemic cichlid fish Tropheus moorii from several localities that have accidentally been put in sympatry in a small harbour bay in the very south of Lake Tanganyika. We analysed the phenotypes (coloration) and genotypes (mitochondrial control region and five microsatellite loci) of almost 500 individuals, sampled over 3 consecutive years. Maximum-likelihood-based parenthood analyses and Bayesian inference of population structure revealed that significantly more juveniles are the product of within-colour-morph matings than could be expected under the assumption of random mating. Our results clearly indicate a marked degree of assortative mating with respect to the different colour morphs. Therefore, we postulate that sexual selection based on social interactions and female mate choice has played an important role in the formation and maintenance of the different colour morphs in Tropheus, and is probably common in other maternally mouthbrooding cichlids as well.  相似文献   

8.
The species flocks of cichlid fishes in the Great East African Lakes are paradigms of adaptive radiation and hence, of great interest to evolutionary biologists. Phylogenetic studies of these fishes have, however, been hampered by the lack of suitable polymorphic markers. The genes of the major histocompatibility complex hold the promise to provide, through their extensive polymorphism, a large number of such markers, but their use has been hampered by the complexity of the genetic system and the lack of definition of the individual loci. In this study we take the first substantial step to alleviate this problem. Using a combination of methods, including the typing of single sperm cells, gyno- or androgenetic individuals, and haploid embryos, as well as sequencing of class II B restriction fragments isolated from gels for Southern blots, we identify the previously characterized homology groups as distinct loci. At least 17 polymorphic class II B loci, all of which are presumably transcribed, have been found among the different species studied. Most of these loci are shared across the various cichlid species and genera. The number of loci per haplotype varies from individual to individual, ranging from 1 to 13. A total of 21 distinct haplotypes differing in the number of loci they carry has thus far been identified. All the polymorphic loci are part of the same cluster in which, however, distances between at least some of the loci (as indicated by recombination frequencies) are relatively large. Both the individual loci and the haplotypes can now be used to study phylogenetic relationships among the members of the species flocks and the mode in which speciation occurs during adaptive radiation.  相似文献   

9.
Cichlid fishes in African rift lakes have undergone rapid speciation, resulting in “species flocks” with more than 300 endemic species in some of the lakes. Most researchers assume that there is little phenotypic variation in cichlid fishes. I report here extensive phenotypic plasticity in a Neotropical cichlid species. I examined the influence of diet on trophic morphology during ontogeny in Cichlasoma managuense. Two groups of full siblings were fed two different diets for eight months after the onset of feeding; thereafter both groups were fed a common diet. Phenotypes that differed significantly at 8.5 months converged almost completely at 16.5 months. If feeding on two different diets is continued after 8.5 months, the phenotypes remain distinct. Differences in diet and possibly in feeding mode are believed to have caused these phenotypic changes. Phenotypic plasticity is described in terms of a qualitative model of heterochrony in which phenotypic change in morphology is explained as retardation of the normal developmental rate. If phenotypic expression of morphology is equally plastic in African cichlid species as it may be in the American cichlids, as exemplified by C. managuense, then taxonomic, ecological, and evolutionary analyses of “species flocks” may be in need of revision. However, Old World cichlids may be less phenotypically plastic than New World cichlids, and this may contribute to the observed differences in speciation rate and degree of endemism.  相似文献   

10.
Phylogenetic analyses based on mitochondrial (mt) DNA have indicated that the cichlid species flock of the Lake Victoria region is derived from a single ancestral species found in East African rivers, closely related to the ancestor of the Lake Malawi cichlid species flock. The Lake Victoria flock contains ten times less mtDNA variation than the Lake Malawi radiation, consistent with current estimates of the ages of the lakes. We present results of a phylogenetic investigation using nuclear (amplified fragment length polymorphism) markers and a wider coverage of riverine haplochromines. We demonstrate that the Lake Victoria-Edward flock is derived from the morphologically and ecologically diverse cichlid genus Thoracochromis from the Congo and Nile, rather than from the phenotypically conservative East African Astatotilapia. This implies that the ability to express much of the morphological diversity found in the species flock may by far pre-date the origin of the flock. Our data indicate that the nuclear diversity of the Lake Victoria-Edward species flock is similar to that of the Lake Malawi flock, indicating that the genetic diversity is considerably older than the 15 000 years that have passed since the lake began to refill. Most of this variation is manifested in trans-species polymorphisms, indicating very recent cladogenesis from a genetically very diverse founder stock. Our data do not confirm strict monophyly of either of the species flocks, but raise the possibility that these flocks have arisen from hybrid swarms.  相似文献   

11.
Abstract Sympatric speciation is a contentious concept, although theoretical models as well as empirical evidence support its relevance in evolutionary biology. The Midas cichlid species complex (Amphilophus citrinellus, labiatus, zaliosus) from several crater lakes in Nicaragua fits several of the key characteristics of a sympatric speciation model. In particular, in A. citrinellus (i) strong assortative mating on the basis of colour polymorphism and (ii) ecological differentiation based on morphological polymorphisms involving the feeding apparatus and body shape might both be mechanisms of incipient speciation. Seven microsatellite markers and mtDNA control region sequences [836 base pairs (bp)] were used to study the population genetic structure of 519 specimens of Midas cichlid populations from the two Great Lakes Managua and Nicaragua, and three crater lakes in Nicaragua, Central America. The three named species of the species complex occupy different ecological niches, are morphologically distinct and can be distinguished genetically. We uncovered allopatric genetic differentiation of populations of A. citrinellus from different lakes and distant locations within Lake Managua and, more interestingly, incipient genetic differentiation of several sympatric populations based on colouration (in A. citrinellus and A. labiatus) but not on the morphology of the pharyngeal jaws (in A. citrinellus). Sexual selection and assortative mating might be the driven forces of diversification within named species. The Midas cichlid species complex in Nicaragua is an excellent model system for the study of the incipient stages of adaptation, speciation and the formation of species flocks.  相似文献   

12.
The megadiverse haplochromine cichlid radiations of the East African lakes, famous examples of explosive speciation and adaptive radiation, are according to recent studies, introgressed by different riverine lineages. This study is based on the first comprehensive mitochondrial and nuclear DNA dataset from extensive sampling of riverine haplochromine cichlids. It includes species from the lower River Congo and Angolan (River Kwanza) drainages. Reconstruction of phylogenetic hypotheses revealed the paradox of clearly discordant phylogenetic signals. Closely related mtDNA haplotypes are distributed thousands of kilometres apart and across major African watersheds, whereas some neighbouring species carry drastically divergent mtDNA haplotypes. At shallow and deep phylogenetic layers, strong signals of hybridization are attributed to the complex Late Miocene/Early Pliocene palaeohistory of African rivers. Hybridization of multiple lineages across changing watersheds shaped each of the major haplochromine radiations in lakes Tanganyika, Victoria, Malawi and the Kalahari Palaeolakes, as well as a miniature species flock in the Congo basin (River Fwa). On the basis of our results, introgression occurred not only on a spatially restricted scale, but massively over almost the whole range of the haplochromine distribution. This provides an alternative view on the origin and exceptional high diversity of this enigmatic vertebrate group.  相似文献   

13.
Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome‐wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ~ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic‐benthic axis in both radiations.  相似文献   

14.
Adaptive radiations provide an excellent opportunity for studying the correlates and causes for the origin of biodiversity. In these radiations, species diversity may be influenced by either the ecological and physical environment, intrinsic lineage effects, or both. Disentangling the relative contributions of these factors in generating biodiversity remains a major challenge in understanding why a lineage does or does not radiate. Here, we examined morphological variation in body shape for replicate flocks of Nicaraguan Midas cichlid fishes and tested its association with biological and physical characteristics of their crater lakes. We found that variability of body elongation, an adaptive trait in freshwater fishes, is mainly predicted by average lake depth (N = 6, P < 0.001, R2 = 0.96). Other factors considered, including lake age, surface area, littoral zone area, number of co‐occurring fish species, and genetic diversity of the Midas flock, did not significantly predict morphological variability. We also showed that lakes with a larger littoral zone have on average higher bodied Midas cichlids, indicating that Midas cichlid flocks are locally adapted to their crater lake habitats. In conclusion, we found that a lake's habitat predicts the magnitude and the diversity of body elongation in repeated cichlid adaptive radiations.  相似文献   

15.
Endemic radiations provide splendid opportunities for studies in evolutionary biology. Species flocks in ancient lakes, such as in Tanganyika, Malawi or Baikal, have featured prominently in evolutionary biology, viewing these “evolutionary theatres” as hotspots of diversification. However, following a century of neglect, the endemic evolution of limnic cerithioidean gastropods in the two central lake systems on the Indonesian island of Sulawesi (i.e. Lake Poso and the lakes of the Malili system, e.g. Danau Matano, Mahalona and Towuti) also provide instructive model cases for the study of speciation mechanisms, adaptive radiation and annidation (i.e. niche exploitation). We here discuss the evolutionary and taxonomic implications of the lacustrine species flocks in Tylomelania from these lakes in Sulawesi as an exceptional endemic assemblage of morphologically distinct viviparous pachychilid gastropods. This first comprehensive compilation of data on both ancient lake systems, Poso and Malili, offers a new perspective on ecological differentiation in this radiation. Presented here within the framework of the theory of evolutionary ecology it provides a research program for acquiring a synthetical perspective that includes morphology, molecular genetics, ecology and biogeography. In this context, it will be possible to compare the species flocks of these truly “Darwinian snails” on Sulawesi with the long enigmatic, so-called thalassoid (i.e. marine-like) gastropod radiation in East African’s Lake Tanganyika.  相似文献   

16.
Synopsis The African Great Lakes are considered to be dynamically fragile ecosystems that are relatively resistant to minor changes with which they have co-evolved but vulnerable to major perturbations such as overfishing, the introduction of alien species and pollution. These lakes are inhabited by large species flocks of cichlid fishes which are characterised by a complex structure of interaction both between and within species, as is typical of mature ecosystems. Major perturbations, such as the disruption of trophic interactions through the introduction of alien fishes, may reverse the domination of relatively precocial, specialised forms and result in the creation of conditions that are conducive to the survival of more altricial, generalised forms with strong colonising abilities. The introduction of Nile perch and Nile tilapia, as well as other alien fishes, into Lake Victoria, combined with overfishing for the indigenous cichlid species, has resulted in marked changes to the fish communities and the fisheries that depend on them. The most important impacts of the Nile perch appear to be predation and aggressive effects whereas those of the tilapias include hybridization, overcrowding, competition for food and possibly the introduction of parasites and diseases. While the three proposed methods of conserving the indigenous flocks of cichlid fishes (captive propagation, reducing Nile perch stocks and closure of the haplochromine trawl fishery) all have merit, the changes that are occurring in Lake Victoria are basically irreversible. The highest priority should be to assist the governments of the riparian countries (Tanzania, Uganda and Kenya) with monitoring and research programmes and to support their policies of non-introduction of further alien fishes into any of the African Great Lakes so as prevent the same cycle of events from occurring, for example, in Lakes Tanganyika and Malawi. The diverse animal and plant communities of the African Great Lakes are a heritage of all mankind and it is the duty of every country to play a role in their conservation. It is therefore proposed that an internationally funded research programme should be mounted on the African Great Lakes on the scale of the tropical forest biome project of the IUCN. Editorial  相似文献   

17.
Sexual selection on male coloration has been implicated in the evolution of colourful species flocks of East African cichlid fish. During adaptive radiations, animals diverge in multiple phenotypic traits, but the role of physiology has received limited attention. Here, we report how divergence in physiology may contribute to the stable coexistence of two hybridizing incipient species of cichlid fish from Lake Victoria. Males of Pundamilia nyererei (males are red) tend to defeat those of Pundamilia pundamilia (males are blue), yet the two sibling species coexist in nature. It has been suggested that red males bear a physiological cost that might offset their dominance advantage. We tested the hypothesis that the two species differ in oxidative stress levels and immune function and that this difference is correlated with differences in circulating steroid levels. We manipulated the social context and found red males experienced significantly higher oxidative stress levels than blue males, but only in a territorial context when colour and aggression are maximally expressed. Red males exhibited greater aggression levels and lower humoral immune response than blue males, but no detectable difference in steroid levels. Red males appear to trade off increased aggressiveness with physiological costs, contributing to the coexistence of the two species. Correlated divergence in colour, behaviour and physiology might be widespread in the dramatically diverse cichlid radiations in East African lakes and may play a crucial role in the remarkably rapid speciation of these fish.  相似文献   

18.
Female mate choice can be an imperfect barrier against hybridization. Among the cichlid fishes of the East African great lakes, sexual selection on male nuptial coloration has been noted as being particularly important for reproductive isolation among closely related lineages. Diversification of the rock‐dwelling cichlids of Lake Mala?i has led to a repeating pattern of color morphs wherein more distantly related species may look more similar than a more closely related pair. Using members of the Metriaclima zebra group and a heterogener, I tested the hypothesis that females would spend greater time associating with males more similarly colored to her species than females would with divergently colored, although more closely related males. Experimental results were consistent with this hypothesis, thus supporting the speculation and some field observation that mate choice can fail as a barrier to hybridization if a female encounters a distantly related male that shares the nuptial coloration of males of her own species and color morph. This notion is discussed in the broader context of both the adaptive and non‐adaptive mechanisms that have been suggested to be important to the radiation of this group.  相似文献   

19.
The diverse cichlid species flocks of the East African lakes provide a classical example of adaptive radiation. Territorial aggression is thought to influence the evolution of phenotypic diversity in this system. Most vertebrates mount hormonal (androgen, glucocorticoid) responses to a territorial challenge. These hormones, in turn, influence behavior and multiple aspects of physiology and morphology. Examining variation in competition-induced hormone secretion patterns is thus fundamental to an understanding of the mechanisms of phenotypic diversification. We test here the hypothesis that diversification in male aggression has been accompanied by differentiation in steroid hormone levels. We studied two pairs of sibling species from Lake Victoria belonging to the genera Pundamilia and Mbipia. The two genera are ecologically differentiated, while sibling species pairs differ mainly in male color patterns. We found that aggression directed toward conspecific males varied between species and across genera: Pundamilia nyererei males were more aggressive than Pundamilia pundamilia males, and Mbipia mbipi males were more aggressive than Mbipia lutea males. Males of both genera exhibited comparable attack rates during acute exposure to a novel conspecific intruder, while Mbipia males were more aggressive than Pundamilia males during continuous exposure to a conspecific rival, consistent with the genus difference in feeding ecology. Variation in aggressiveness between genera, but not between sibling species, was reflected in androgen levels. We further found that M. mbipi displayed lower levels of cortisol than M. lutea. Our results suggest that concerted divergence in hormones and behavior might play an important role in the rapid speciation of cichlid fishes.  相似文献   

20.
Sturmbauer  Christian  Hainz  Ursula  Baric  Sanja  Verheyen  Erik  Salzburger  Walter 《Hydrobiologia》2003,500(1-3):51-64
One of the most surprising outcomes of recent molecular studies on cichlid fishes of the three Great East African Lakes Victoria, Malawi and Tanganyika, was the stunning rapidity of speciation and cladogenesis at early stages of adaptive radiation. Despite their rapid pace, speciation events were so far intuitively assumed to proceed in a bifurcating and tree-like fashion, even if they could not be resolved by gene phylogenies due to a lack of resolution. On the basis of phylogenetic analyses of the Tropheini, a lineage of endemic rock-dwelling cichlid fishes from Lake Tanganyika, we suggest a pathway of explosive speciation that accounts for a non-bifurcating manner of cladogenesis. This pattern is likely to be the result of the contemporaneous origin of a multitude of founder populations in geographically isolated rock habitats among which gene flow was interrupted simultaneously by a major change of the lake habitat in the form of a rapid rise of the lake level. As a consequence, all new species arising from that vicariance event must exhibit almost equal genetic distances to each other, within the scope of genetic diversity of the founder population(s), even if the actual processes of subsequent speciation and eco-morphological diversification followed independent routes. Our phylogeny also suggests a high frequency of parallel evolution of equivalent trophic specialization in the Tropheini. This phenomenon seems to be an inherent feature of this pathway of speciation, due to the action of similar selective forces on the same set of species colonizing isolated habitats of the same type. Explosive speciation via synchronization of genetic divergence triggered by rapid environmental changes seems to be particularly likely to occur at advanced stages of adaptive radiation, when species are already adapted to particular habitats and have a reduced ability for dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号