首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
GATA3 expression is essential for type-2 helper T (Th2) cell differentiation. GATA3-mediated chromatin remodeling at the Th2 cytokine gene loci, including Th2-specific long range histone hyperacetylation of the interleukin (IL)-13/IL-4 gene loci, occurs in developing Th2 cells. However, little is known about the role of GATA3, if any, in the maintenance of established remodeled chromatin at the Th2 cytokine gene loci. Here, we established a Cre/LoxP-based site-specific recombination system in cultured CD4 T cells using a unique adenovirus-mediated gene transfer technique. This system allowed us to investigate the effect of loss of GATA3 expression in in vitro differentiated Th2 cells. After ablation of GATA3, we detected reduced production of all Th2 cytokines, increased DNA methylation at the IL-4 gene locus, and decreased histone hyperacetylation at the IL-5 gene locus but not significantly so at the IL-13/IL-4 gene loci. Thus, GATA3 plays important roles in the maintenance of the Th2 phenotype and continuous chromatin remodeling of the specific Th2 cytokine gene locus through cell division.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities. Here we demonstrate that a previously uncharacterized SET domain protein, Set9, is responsible for H4-K20 methylation in the fission yeast Schizosaccharomyces pombe. Surprisingly, H4-K20 methylation does not have any apparent role in the regulation of gene expression or heterochromatin function. Rather, we find the modification has a role in DNA damage response. Loss of Set9 activity or mutation of H4-K20 markedly impairs cell survival after genotoxic challenge and compromises the ability of cells to maintain checkpoint mediated cell cycle arrest. Genetic experiments link Set9 to Crb2, a homolog of the mammalian checkpoint protein 53BP1, and the enzyme is required for Crb2 localization to sites of DNA damage. These results argue that H4-K20 methylation functions as a "histone mark" required for the recruitment of the checkpoint protein Crb2.  相似文献   

10.
The Th2 cytokine IL-13 is a major effector molecule in human allergic inflammation. Notably, IL-13 expression at birth correlates with subsequent susceptibility to atopic disease. In order to characterize the chromatin-based mechanisms that regulate IL-13 expression in human neonatal CD4(+) T cells, we analyzed patterns of DNase I hypersensitivity and epigenetic modifications within the IL-13 locus in cord blood CD4(+) T cells, naive or differentiated in vitro under Th1- or Th2-polarizing conditions. In naive CD4(+) T cells, hypersensitivity associated with DNA hypomethylation was limited to the distal promoter. Unexpectedly, during both Th1 and Th2 differentiation, the locus was extensively remodeled, as revealed by the formation of numerous HS sites and decreased DNA methylation. Obvious differences in chromatin architecture were limited to the proximal promoter, where strong hypersensitivity, hypomethylation, and permissive histone modifications were found selectively in Th2 cells. In addition to revealing the locations of putative cis-regulatory elements that may be required to control IL-13 expression in neonatal CD4(+) T cells, our results suggest that differential IL-13 expression may depend on the acquisition of a permissive chromatin architecture at the proximal promoter in Th2 cells rather than the formation of locus-wide repressive chromatin in Th1 cells.  相似文献   

11.
Each of the three Th2 cytokine genes, IL-4, IL-5, and IL-13, has different functions. We hypothesized that Th2 heterogeneity could yield Th2 subpopulations with different cytokine expression and effector functions. Using multiple approaches, we demonstrate that human Th2 cells are composed of two major subpopulations: a minority IL-5(+) (IL-5(+), IL-4(+), IL-13(+)) and majority IL-5(-) Th2 (IL-5(-), IL-4(+), IL-13(+)) population. IL-5(+) Th2 cells comprised only 20% of all Th2 cells. Serial rounds of in vitro differentiation initially yielded IL-5(-) Th2, but required multiple rounds of differentiation to generate IL-5(+) Th2 cells. IL-5(+) Th2 cells expressed less CD27 and greater programmed cell death-1 than IL-5(-) Th2 cells, consistent with their being more highly differentiated, Ag-exposed memory cells. IL-5(+) Th2 cells expressed greater IL-4, IL-13, and GATA-3 relative to IL-5(-) Th2 cells. GATA-3 and H3K4me(3) binding to the IL5 promoter (IL5p) was greater in IL-5(+) relative to IL-5(-) Th2 cells, whereas there was no difference in their binding to the IL4p and IL13p. Conversely, H3K27me(3) binding to the IL5p was greater in IL-5(-) Th2 cells. These findings demonstrate Th2 lineage heterogeneity, in which the IL5 gene is regulated in a hierarchical manner relative to other Th2 genes. IL-5(+) Th2 cells are phenotypically distinct and have epigenetic changes consistent with greater IL5p accessibility. Recurrent antigenic exposure preferentially drives the differentiation of IL-5(+) Th2 cells. These results demonstrate that IL-5(+) and IL-5(-) Th2 cells, respectively, represent more and less highly differentiated Th2 cell subpopulations. Such Th2 subpopulations may differentially contribute to Th2-driven pathology.  相似文献   

12.
Histone H3 Lys4 trimethylation (H3-K4me3) is a conserved mark of actively transcribed chromatin. Using a conditional mutant of the yeast H3-K4 methyltransferase, Set1p, we demonstrate rapid turnover of H3-K4me3 and H3-K4me2 in vivo and show this process requires Yjr119Cp, of the JARID1 family of JmjC proteins. Ectopic overexpression of mouse Jarid1B, a Yjr119Cp homolog, greatly diminished H3-K4me3 and H3-K4me2 in HeLa cells, suggesting these proteins function as K4 demethylases in vivo.  相似文献   

13.
Functionally polarized CD4+ T helper (Th) cells such as Th1, Th2 and Th17 cells are central to the regulation of acquired immunity. However, the molecular mechanisms governing the maintenance of the polarized functions of Th cells remain unclear. GATA3, a master regulator of Th2 cell differentiation, initiates the expressions of Th2 cytokine genes and other Th2-specific genes. GATA3 also plays important roles in maintaining Th2 cell function and in continuous chromatin remodeling of Th2 cytokine gene loci. However, it is unclear whether continuous expression of GATA3 is required to maintain the expression of various other Th2-specific genes. In this report, genome-wide DNA gene expression profiling revealed that GATA3 expression is critical for the expression of a certain set of Th2-specific genes. We demonstrated that GATA3 dependency is reduced for some Th2-specific genes in fully developed Th2 cells compared to that observed in effector Th2 cells, whereas it is unchanged for other genes. Moreover, effects of a loss of GATA3 expression in Th2 cells on the expression of cytokine and cytokine receptor genes were examined in detail. A critical role of GATA3 in the regulation of Th2-specific gene expression is confirmed in in vivo generated antigen-specific memory Th2 cells. Therefore, GATA3 is required for the continuous expression of the majority of Th2-specific genes involved in maintaining the Th2 cell identity.  相似文献   

14.
During the differentiation of naive Th cells into Th2 effector cells, the entire IL-4/IL-13 locus is remodeled into an accessible chromatin conformation. Here we show that ectopic expression and activation of Stat6 or GATA-3 in Th cells developing under Th1-polarizing conditions lead to the induction of chromatin remodeling not only at the flanking regions of the IL-4 and IL-13 genes but also at the IL-4/IL-13 intergenic regulatory region for the IL-4/IL-13/IL-5 gene cluster. Furthermore, we demonstrate that GATA-3 and another Th2-specific, inducible protein complex interact with the IL-4/IL-13 intergenic DNase I hypersensitive region specifically in Th2 cells.  相似文献   

15.
16.
17.
The Th2 locus control region (LCR) has been shown to be a crucial cis-acting element for Th2 cytokine expression and Th2 cell differentiation. To study the role of Th2 LCR in ifng locus regulation, we examined the expression of IFN-γ in Th2 cells from Th2 LCR-deficient mice. We found IFN-γ to be aberrantly up-regulated. In addition, histone 3(H3)-acetylation and histone 3 lysine 4 (H3-K4)-methylation greatly increased at the ifng locus of the Th2 cells. GATA-3 and STAT6 bound to the ifng promoter in Th2 cells from the wild type but not from the Th2 LCR-deficient mice, and they directly repressed ifng expression in transient reporter assay. Moreover, ectopic expression of GATA-3 and STAT6-VT repressed the aberrant expression of the ifng gene and restored repressive chromatin state at the ifng locus in Th2 cells from Th2 LCR-deficient mice. These results suggest that expression of the ifng gene and chromatin remodeling of the ifng locus are under the control of a Th2 LCR-mediated Th2 differentiation program.  相似文献   

18.
19.
Histone methylation patterns in the human genome, especially in euchromatin regions, have not been systematically characterized. In this study, we examined the profile of histone H3 methylation (Me) patterns at different lysines (Ks) in the coding regions of human genes by genome-wide location analyses by using chromatin immunoprecipitation linked to cDNA arrays. Specifically, we compared H3-KMe marks known to be associated with active gene expression, namely, H3-K4Me, H3-K36Me, and H3-K79Me, as well as those associated with gene repression, namely, H3-K9Me, H3-K27Me, and H4-K20Me. We further compared these to histone lysine acetylation (H3-K9/14Ac). Our results demonstrated that: first, close correlations are present between active histone marks except between H3-K36Me2 and H3-K4Me2. Notably, histone H3-K79Me2 is closely associated with H3-K4Me2 and H3-K36Me2 in the coding regions. Second, close correlations are present between histone marks associated with gene silencing such as H3-K9Me3, H3-K27Me2, and H4-K20Me2. Third, a poor correlation is observed between euchromatin marks (H3-K9/K14Ac, H3-K4Me2, H3-K36Me2, and H3-K79Me2) and heterochromatin marks (H3-K9Me2, H3-K9Me3, H3-K27Me2, and H4-K20Me2). Fourth, H3-K9Me2 is neither associated with active nor repressive histone methylations. Finally, histone H3-K4Me2, H3-K4Me3, H3-K36Me2, and H3-K79Me2 are associated with hyperacetylation and active genes, whereas H3-K9Me2, H3-K9Me3, H3-K27Me2, and H4-K20Me2 are associated with hypoacetylation. These data provide novel new information regarding histone KMe distribution patterns in the coding regions of human genes.  相似文献   

20.
Epigenetic modifications, including DNA methylation, profoundly influence gene expression of CD4(+) Th-specific cells thereby shaping memory Th cell function. We demonstrate here a correlation between a lacking fixed potential of human memory Th cells to re-express the immunoregulatory cytokine gene IL10 and its DNA methylation status. Memory Th cells secreting IL-10 or IFN-gamma were directly isolated ex vivo from peripheral blood of healthy volunteers, and the DNA methylation status of IL10 and IFNG was assessed. Limited difference in methylation was found for the IL10 gene locus in IL-10-secreting Th cells, as compared with Th cells not secreting IL-10 isolated directly ex vivo or from in vitro-established human Th1 and Th2 clones. In contrast, in IFN-gamma(+) memory Th cells the promoter of the IFNG gene was hypomethylated, as compared with IFN-gamma-nonsecreting memory Th cells. In accordance with the lack of epigenetic memory, almost 90% of ex vivo-isolated IL-10-secreting Th cells lacked a functional memory for IL-10 re-expression after restimulation. Our data indicate that IL10 does not become epigenetically marked in human memory Th cells unlike effector cytokine genes such as IFNG. The exclusion of IL-10, but not effector cytokines, from the functional memory of human CD4(+) T lymphocytes ex vivo may reflect the need for appropriate regulation of IL-10 secretion, due to its potent immunoregulatory potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号