首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu  Zhihua  Xia  Mian  Poovaiah  B.W. 《Plant molecular biology》1998,38(5):889-897
cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.  相似文献   

2.
Elongation factor 2 (EF-2) has been recently shown to be extensively phosphorylated in a Ca2+/calmodulin-dependent manner in extracts of mammalian cells (A. G. Ryazanov (1987) FEBS Lett. 214, 331-334). In the present study, we partially purified the protein kinase which phosphorylates EF-2 from rabbit reticulocytes. The molecular weight of the enzyme determined by gel filtration was about 140,000. Unlike the substrate, the EF-2 kinase had no affinity for RNA and therefore could be separated from EF-2 by chromatography on RNA-Sepharose. After chromatography on hydroxyapatite, the kinase activity became calmodulin-dependent. Two-dimensional separation of the phosphorylated EF-2 according to O'Farrell's technique revealed that there were two phosphorylation sites within the EF-2 molecule; in both cases, the phosphorylated amino acid was threonine. The EF-2 kinase differed from the four known types of Ca2+/calmodulin-dependent protein kinases. Thus, the system of EF-2 phosphorylation represents the novel (fifth) Ca2+/calmodulin-dependent system of protein phosphorylation. This system is supposed to be responsible for the regulation of the elongation rate of protein biosynthesis in eukaryotic cells.  相似文献   

3.
The phosphorylation state of six cytoplasmic proteins is increased following treatment of isolated rat hepatocytes with hormones that elevate free intracellular Ca2+ levels (Garrison, J. C. and Wagner, J. D. (1982) J. Biol. Chem. 257, 13135-13143). Tryptic 32P-phosphopeptide maps of two of the substrates, pyruvate kinase and a 49,000-dalton protein, the major 32P-labeled protein in hepatocytes, were prepared following stimulation of cells with vasopressin, a Ca2+-linked hormone. Peptide maps of the 49,000-dalton protein phosphorylated in vitro with the recently identified multifunctional Ca2+/calmodulin-dependent protein kinase contained phosphopeptides identical to those observed in the intact cell, suggesting that this kinase is activated in response to Ca2+-mobilizing hormones. Similar in vitro phosphorylation experiments with pyruvate kinase suggested that the Ca2+/calmodulin-dependent protein kinase can phosphorylate not only the serine residues observed following vasopressin stimulation of the intact cell but also additional threonine residues. Both pyruvate kinase and the 49,000-dalton protein are also phosphorylated in the hepatocyte in response to glucagon and in vitro by the cAMP-dependent protein kinase. Both vasopressin and glucagon appear to stimulate the phosphorylation of identical serine residues in pyruvate kinase but only vasopressin enhances the phosphorylation of certain sites in the 49,000-dalton protein. Comparison of the tryptic phosphopeptide maps of these substrates phosphorylated in vitro with either the Ca2+/calmodulin-dependent protein kinase or the cAMP-dependent protein kinase suggests that the Ca2+-dependent kinase can phosphorylate unique sites in both substrates. It appears to share specificity at other sites with the cAMP-dependent protein kinase. Overall, the results suggest that the multifunctional Ca2+/calmodulin-dependent protein kinase plays an important role in the response of the hepatocyte to a Ca2+ signal.  相似文献   

4.
Phospholamban, the putative regulatory proteolipid of the Ca2+/Mg2+ ATPase in cardiac sarcoplasmic reticulum, was selectively phosphorylated by a Ca2+/calmodulin (CaM)-dependent protein kinase associated with a cardiac membrane preparation. This kinase also catalyzed the phosphorylation of two exogenous proteins known to be phosphorylated by the multifunctional Ca2+/CaM-dependent protein kinase II (Ca2+/CaM-kinase II), i.e., smooth muscle myosin light chains and glycogen synthase a. The latter protein was phosphorylated at sites previously shown to be phosphorylated by the purified multifunctional Ca2+/CaM-kinase II from liver and brain. The membrane-bound kinase did not phosphorylate phosphorylase b or cardiac myosin light chains, although these proteins were phosphorylated by appropriate, specific calmodulin-dependent protein kinases added exogenously. In addition to phospholamban, several other membrane-associated proteins were phosphorylated in a calmodulin-dependent manner. The principal one exhibited a Mr of approximately 56,000, a value similar to that of the major protein (57,000) in a partially purified preparation of Ca2+/CaM-kinase II from the soluble fraction of canine heart that was autophosphorylated in a calmodulin-dependent manner. These data indicate that the membrane-bound, calmodulin-dependent protein kinase that phosphorylates phospholamban in cardiac membranes is not a specific calmodulin-dependent kinase, but resembles the multifunctional Ca2+/CaM-kinase II. Our data indicate that this kinase may be present in both the particulate and soluble fractions of canine heart.  相似文献   

5.
The activation of Group 1 metabotropic glutamate receptors, mGluR5 and mGluR1alpha, triggers intracellular calcium release; however, mGluR5 activation is unique in that it elicits Ca2+ oscillations. A short region of the mGluR5 C terminus is the critical determinant and differs from the analogous region of mGluR1alpha by a single amino acid residue, Thr-840, which is an aspartic acid (Asp-854) in mGluR1alpha. Previous studies show that mGluR5-elicited Ca2+ oscillations require protein kinase C (PKC)-dependent phosphorylation and identify Thr-840 as the phosphorylation site. However, direct phosphorylation of mGluR5 has not been studied in detail. We have used biochemical analyses to directly investigate the phosphorylation of the mGluR5 C terminus. We showed that Ser-839 on mGluR5 is directly phosphorylated by PKC, whereas Thr-840 plays a permissive role. Although Ser-839 is conserved in mGluR1alpha (Ser-853), it is not phosphorylated, as the adjacent residue (Asp-854) is not permissive; however, mutagenesis of Asp-854 to a permissive alanine residue allows phosphorylation of Ser-853 on mGluR1alpha. We investigated the physiological consequences of mGluR5 Ser-839 phosphorylation using Ca2+ imaging. Mutations that eliminate Ser-839 phosphorylation prevent the characteristic mGluR5-dependent Ca2+ oscillations. However, mutation of Thr-840 to alanine, which prevents potential Thr-840 phosphorylation but is still permissive for Ser-839 phosphorylation, has no effect on Ca2+ oscillations. Thus, we showed that it is phosphorylation of Ser-839, not Thr-840, that is absolutely required for the unique Ca2+ oscillations produced by mGluR5 activation. The Thr-840 residue is important only in that it is permissive for the PKC-dependent phosphorylation of Ser-839.  相似文献   

6.
A G Ryazanov  E K Davydova 《FEBS letters》1989,251(1-2):187-190
Previously we have found that elongation factor 2 (EF-2) from mammalian cells can be phosphorylated by a special Ca2+/calmodulin-dependent protein kinase (EF-2 kinase). Phosphorylation results in complete inactivation of EF-2 in the poly(U)-directed cell-free translation system. However, the partial function of EF-2 affected by phosphorylation remained unknown. Here we show that phosphorylated EF-2, unlike non-phosphorylated EF-2, is unable to switch ribosomes carrying poly(U) and Phe-tRNA in the A site to a puromycin-reactive state. Thus, phosphorylation of EF-2 seems to block its ability to promote a shift of the aminoacyl(peptidyl)-tRNA from the A site to the P site, i.e. translocation itself.  相似文献   

7.
Microtubule-associated protein 2 (MAP2) is an excellent substrate for both cyclic-AMP (cAMP)-dependent and Ca2+/calmodulin-dependent kinases. A recently purified cytosolic Ca2+/calmodulin-dependent kinase (now designated CaM kinase II) phosphorylates MAP2 as a major substrate. We now report that microtubule-associated cAMP-dependent and calmodulin-dependent protein kinases phosphorylate MAP2 on separate sites. Tryptic phosphopeptide digestion and two-dimensional phosphopeptide mapping revealed 11 major peptides phosphorylated by microtubule-associated cAMP-dependent kinase and five major peptide species phosphorylated by calmodulin-dependent kinase. All 11 of the cAMP-dependently phosphorylated peptides were phosphorylated on serine residues, whereas four of five major peptides phosphorylated by the calmodulin-dependent kinase were phosphorylated on threonine. Only one peptide spot phosphorylated by both kinases was indistinguishable by both migration and phosphoamino acid site. The results indicate that cAMP-dependent and calmodulin-dependent kinases may regulate microtubule and cytoskeletal dynamics by phosphorylation of MAP2 at distinct sites.  相似文献   

8.
Endogenous phosphorylation of the crude membrane fraction of cultured 3Y1 fibroblast cells was enhanced by the addition of Ca2+/calmodulin. Both Ca2+/calmodulin-dependent protein kinase activity and its substrate were present in a cytoskeletal fraction, obtained as a pellet after washing of the membrane fraction with 2 mM EGTA, 0.6 M NaCl, and 1% Triton X-100. The phosphorylatable protein in the Triton X-insoluble fraction was identified by immunoblotting as vimentin. This endogenous phosphorylation induced by calmodulin was inhibited by the addition of KN-62, a specific Ca2+/calmodulin-dependent protein kinase II inhibitor, in a dose-dependent manner. However, phosphorylation of the 59 kDa protein (vimentin) in this fraction was not stimulated by adding both phosphatidyl serine and cAMP, thereby suggesting the absence of protein kinase C or of cAMP-dependent protein kinase in this fraction. The protein kinase associated with the Triton X-insoluble fraction phosphorylated the Ca2+/calmodulin-dependent protein kinase II-specific site of synapsin I from the bovine cortex. Two-dimensional phosphopeptide maps of vimentin indicated that a major phosphopeptide phosphorylated by the endogenous calmodulin-dependent kinase also appears to be the same as a major phosphopeptide phosphorylated by the exogenous Ca2+/calmodulin-dependent protein kinase II. Our results suggest that cytoskeleton-associated Ca2+/calmodulin-dependent protein kinase II regulates dynamic cellular functions through the phosphorylation of cytoskeletal elements in non-neural cells.  相似文献   

9.
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells.  相似文献   

10.
To confirm directly the role of Thr-286 as the autophosphorylation site responsible for the appearance of Ca2(+)-independent activity of Ca2+/calmodulin-dependent protein kinase II alpha subunit, we constructed two mutated cDNAs of Thr-286 to Pro or Ala using site-directed mutagenesis and introduced into Chinese hamster ovary cells. The mutant enzymes expressed in stable cell lines were partially purified and their catalytic properties were confirmed to be similar to those of wild-type kinase, except that the mutant kinase which were deprived of Thr-286 as an autophosphorylation site could not be converted to Ca2(+)-independent forms upon autophosphorylation. Other autophosphorylation sites of the mutants were essentially unchanged from those of the wild-type kinase and phosphorylation of such sites did not convert them to Ca2(+)-independent forms. The results indicate that Thr-286 is the only indispensable autophosphorylation site for the appearance of Ca2(+)-independent activity of calmodulin-dependent protein kinase II alpha subunit.  相似文献   

11.
The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.  相似文献   

12.
Ca2+-dependent phosphorylation of tyrosine hydroxylase in PC12 cells   总被引:5,自引:1,他引:4  
Ca2+-dependent protein phosphorylation has been detected in numerous tissues and may mediate some of the effects of hormones and other extracellular stimuli on cell function. In this paper we demonstrate that a Ca2+/calmodulin-dependent protein kinase similar to the enzyme previously purified and characterized from rat brain is present in PC12, a rat pheochromocytoma cell line. We show that Ca2+ influx elicited by various forms of cell stimulation leads to increased 32P incorporation into tyrosine hydroxylase (TH), a major phosphoprotein in these cells. Several other unidentified proteins are either phosphorylated or dephosphorylated as a result of Ca2+ influx. Acetylcholine stimulates TH phosphorylation by activation of nicotinic receptors. K+-induced depolarization stimulates TH phosphorylation in a Ca2+-dependent manner, presumably by opening voltage-dependent Ca2+ channels. Ca2+ influx that results from the direct effects of the ionophore A23187 also leads to TH phosphorylation. Phosphorylation of TH is accompanied by an activation of the enzyme. These Ca2+-dependent effects are independent of cyclic AMP and thus implicate a Ca2+-dependent protein kinase as a mediator of both hormonal and electrical stimulation of PC12 cells.  相似文献   

13.
The autophosphorylation of purified Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) on a threonine-containing phosphopeptide common to both the alpha and beta subunits was previously shown to convert this enzyme into a catalytically active Ca2+-independent species. We now have examined the phosphorylation and activation of Ca2+/CaM kinase II in synaptosomes, a Ca2+-dependent neurosecretory system consisting of isolated nerve terminals. Synaptosomes were prelabeled with 32Pi and the alpha subunit of Ca2+/CaM kinase II was immunoprecipitated. Under basal incubation conditions the alpha subunit was phosphorylated. Depolarization of synaptosomes produced a rapid (2-5 s) Ca2+-dependent increase of about 50% in the state of phosphorylation of the alpha subunit. This was followed by a slower increase in the 32P content of the alpha subunit over the next 5 min of depolarization. The enhanced phosphorylation was characterized by an initial rise (2 s) and subsequent decrease (30 s) in the phosphothreonine content of the alpha subunit. In contrast, the phosphoserine content of the alpha subunit slowly increased during the course of depolarization. Thermolytic two-dimensional phosphopeptide maps of the alpha subunit demonstrated that depolarization stimulated the labeling of a phosphopeptide associated with autoactivation. In parallel experiments, unlabeled synaptosomes were depolarized, and lysates of these synaptosomes were assayed for Ca2+/CaM kinase II activity. Depolarization produced a rapid (less than or equal to 2 s) increase in Ca2+-independent Ca2+/CaM kinase II activity. This activity returned to basal levels by 60 s. Thus, depolarization of intact synaptosomes is associated with the transient phosphorylation of Ca2+/CaM kinase II on threonine residues, presumably involving an autophosphorylation mechanism and concomitantly the transient generation of the Ca2+-independent form of Ca2+/CaM kinase II.  相似文献   

14.
Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.  相似文献   

15.
The ciliary axoneme is the minimal structure responsible for Ca2+-dependent modulation of ciliary movement. We demonstrated that, in Tetrahymena ciliary axonemes, beta-tubulin was exclusively phosphorylated by an endogenous Ca2+/calmodulin-dependent protein kinase(s). The phosphorylation of beta-tubulin also occurred in the outerdoublet microtubule fraction, suggesting that the responsible enzyme(s) was tightly associated with outerciliary motility, Ca2+-dependent phosphorylation of beta-tubulin was also found to occur exclusively. From these results, it is inferable that the phosphorylation of beta-tubulin is involved in Ca2+-dependent ciliary reversal.  相似文献   

16.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

17.
ATP-citrate lyase and acetyl-CoA carboxylase purified from lactating rat mammary gland are phosphorylated stoichiometrically by the calmodulin-dependent multiprotein kinase from rabbit skeletal muscle. The reactions are completely dependent on the presence of both Ca2+ and calmodulin. ATP-citrate lyase and acetyl-CoA carboxylase are also phosphorylated stoichiometrically by the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) purified from bovine brain. Phosphorylation of these substrates is stimulated 6-fold and 40-fold respectively by Ca2+ and phosphatidylserine. The calmodulin-dependent and phospholipid-dependent protein kinases phosphorylate the same serine residue on ATP-citrate lyase that is phosphorylated by cyclic-AMP-dependent protein kinase. The sequence of the tryptic peptide containing this site on the mammary enzyme is identical with the sequence of the peptide containing the site on ATP-citrate lyase that is phosphorylated in isolated hepatocytes in response to insulin and/or glucagon. The calmodulin-dependent, phospholipid-dependent and cyclic-AMP-dependent protein kinases phosphorylate distinct sites on acetyl-CoA carboxylase. However, one of the three phosphorylated tryptic peptides derived from enzyme treated with the phospholipid-dependent kinase is identical with the major phosphopeptide (T1) derived from enzyme treated with cyclic-AMP-dependent protein kinase. Phosphorylation of acetyl-CoA carboxylase by the phospholipid-dependent protein kinase inactivates acetyl-CoA carboxylase in a similar manner to cyclic-AMP-dependent protein kinase. With either protein kinase slightly greater phosphorylation and inactivation is seen after pretreatment of acetyl-CoA carboxylase with protein phosphatase-2A, but the effects of the protein phosphatase treatment are not completely reversed. Inactivation by the phospholipid-dependent protein kinase is Ca2+- and phospholipid-dependent, is reversed by protein phosphatase-2A, and correlates with the degree of phosphorylation. The relevance of these findings to insulin- and growth-factor-promoted phosphorylation of ATP-citrate lyase and acetyl-CoA carboxylase in intact cells is discussed.  相似文献   

18.
19.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

20.
Changes in glycolytic flux have been observed in liver under conditions where effects of cAMP seem unlikely. We have, therefore, studied the phosphorylation of four enzymes involved in the regulation of glycolysis and gluconeogenesis (6-phosphofructo-1-kinase from rat liver and rabbit muscle; pyruvate kinase, 6-phosphofructo-2-kinase and fructose-1,6-bisphosphatase from rat liver) by defined concentrations of two cAMP-independent protein kinases: Ca2+/calmodulin-dependent protein kinase and Ca2+/phospholipid-dependent protein kinase (protein kinase C). The results were compared with those obtained with the catalytic subunit of cAMP-dependent protein kinase. The following results were obtained. 1. Ca2+/calmodulin-dependent protein kinase phosphorylates 6-phosphofructo-1-kinase and L-type pyruvate kinase at a slightly lower rate as compared to cAMP-dependent protein kinase. 2. 6-Phosphofructo-1-kinase is phosphorylated by the two kinases at a single identical position. There is no additive phosphorylation. The final stoichiometry is 2 mol phosphate/mol tetramer. The same holds for L-type pyruvate kinase except that the stoichiometry with either kinase or both kinases together is 4 mol phosphate/mol tetramer. 3. Rabbit muscle 6-phosphofructo-1-kinase is phosphorylated by cAMP-dependent protein kinase but not by Ca2+/calmodulin-dependent protein kinase. 4. Fructose-1,6-bisphosphatase from rat but not from rabbit liver is phosphorylated at the same position but at a markedly lower rate by Ca2+/calmodulin-dependent protein kinase when compared to the phosphorylation by cAMP-dependent protein kinase. 5. 6-Phosphofructo-2-kinase is phosphorylated by Ca2+/calmodulin-dependent protein kinase only at a negligible rate. 6. Protein kinase C does not seem to be involved in the regulation of the enzymes examined: only 6-phosphofructo-2-kinase became phosphorylated to a significant degree. In contrast to the phosphorylation by cAMP-dependent protein kinase, this phosphorylation is not associated with a change of enzyme activity. This agrees with our observation that the sites of phosphorylation by the two kinases are different. The results indicate that Ca2+/calmodulin-dependent protein kinase but not protein kinase C could be involved in the regulation of hepatic glycolytic flux under conditions where changes in the activity of cAMP-dependent protein kinase seem unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号