首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Mao 《Biophysical journal》1991,60(3):611-622
Atomic motions in protein molecules have been studied by molecular dynamics (MD) simulations; dynamics simulation methods have also been employed in conformational studies of polypeptide molecules. It was found that when atomic masses are weighted, the molecular dynamics method can significantly increase the sampling of dihedral conformation space in such studies, compared to a conventional MD simulation of the same total simulation time length. Herein the theoretical study of molecular conformation sampling by the molecular dynamics-based simulation method in which atomic masses are weighted is reported in detail; moreover, a numerical scheme for analyzing the extensive conformational sampling in the simulation of a tetrapeptide amide molecule is presented. From numerical analyses of the mass-weighted molecular dynamics trajectories of backbone dihedral angles, low-resolution structures covering the entire backbone dihedral conformation space of the molecule were determined, and the distribution of rotationally stable conformations in this space were analyzed quantitatively. The theoretical analyses based on the computer simulation and numerical analytical methods suggest that distinctive regimes in the conformational space of the peptide molecule can be identified.  相似文献   

2.
Molecular dynamics simulations have been used to search for the accessible conformations of the melanin-concentrating hormone (MCH). The studies have been performed on native MCH and two of its peptide fragments, a cyclic MCH(5-14) fragment and a linear MCH(5-14) fragment. An analysis of the molecular dynamics trajectories of the three peptides indicates that two regions of the peptide have characteristic conformational properties that may be important for the biological activity. One is a region around Gly8, which is conformationally mobile, and the other is around Pro13, which shows unusual rigidity. The molecular dynamics simulation results are discussed in terms of backbone structural features like beta turns, side-chain interactions, and orientations of the disulfide bridge. The results of this analysis are used to suggest new analogues that will modify the conformational features of the peptide and further define the conformational requirements for activity. Finally, the results are related to nmr studies of the peptide and reveal agreements between the experimental nuclear Overhauser effect constraints and some of the accessible conformations obtained from the simulation.  相似文献   

3.
Multiple molecular dynamics (MD) simulations of crambin with different initial atomic velocities are used to sample conformations in the vicinity of the native structure. Individual trajectories of length up to 5 ns sample only a fraction of the conformational distribution generated by ten independent 120 ps trajectories at 300 K. The backbone atom conformational space distribution is analyzed using principal components analysis (PCA). Four different major conformational regions are found. In general, a trajectory samples only one region and few transitions between the regions are observed. Consequently, the averages of structural and dynamic properties over the ten trajectories differ significantly from those obtained from individual trajectories. The nature of the conformational sampling has important consequences for the utilization of MD simulations for a wide range of problems, such as comparisons with X-ray or NMR data. The overall average structure is significantly closer to the X-ray structure than any of the individual trajectory average structures. The high frequency (less than 10 ps) atomic fluctuations from the ten trajectories tend to be similar, but the lower frequency (100 ps) motions are different. To improve conformational sampling in molecular dynamics simulations of proteins, as in nucleic acids, multiple trajectories with different initial conditions should be used rather than a single long trajectory.  相似文献   

4.
In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.  相似文献   

5.
Folding propensities of bombinins H2 and H4, two members of amphibian bombinins H, a family of 17-20 residue alpha-helical peptides, have been investigated by means of circular dichroism (CD) measurements and molecular dynamics (MD) simulations. The two peptides, with primary structure IIGPVLGLVGSALGGLLKKI-NH2 and differing only for the configuration of the second aminoacid (an L-isoleucine in H2 and a D-alloisoleucine in H4) behave rather differently in solution. In particular both CD measurements and MD simulations indicate that bombinin H2 shows a markedly higher tendency to fold. From a careful inspection of MD trajectories it emerges that the stereochemical isomerization mutation of residue 2 to D-alloisoleucine in H4 peptide, drastically decreases its ability to form intrapeptide contacts. MD simulations also indicate that the conformational sampling in both systems derives from a subtle combination of energetic and entropic effects both involving the peptide itself and the solvent. The present results have been finally paralleled with preliminary information on bombinins H2 and H4 biological activity, i.e. interaction with membrane, supporting the hypothesis of an "already folded" conformation in water rather than interfacial folding tenet.  相似文献   

6.
We have studied the effect of codon-anticodon interaction on the structure and dynamics of transfer RNAs using molecular dynamics simulations over a nanosecond time scale. From our molecular dynamical investigations of the solvated anticodon domain of yeast tRNA(Phe) in the presence and absence of the codon trinucleotides UUC and UUU, we find that, although at a gross level the structures are quite similar for the free and the bound domains, there are small but distinct differences in certain parts of the molecule, notably near the Y37 base. Comparison of the dynamics in terms of interatomic or inter-residual distance fluctuation for the free and the bound domains showed regions of enhanced rigidity in the loop region in the presence of codons. Because fluorescence experiments suggested the existence of multiple conformers of the anticodon domain, which interconvert on a much larger time scale than our simulations, we probed the conformational space using five independent trajectories of 500 ps duration. A generalized ergodic measure analysis of the trajectories revealed that at least for this time scale, all the trajectories populated separate parts of the conformational space, indicating a need for even longer simulations or enhanced sampling of the conformational space to give an unequivocal answer to this question.  相似文献   

7.
Amyloid beta (Abeta) peptides are one of the classes of amphiphilic molecules that on dissolution in aqueous solvents undergo interesting conformational transitions. These conformational changes are known to be associated with their neuronal toxicity. The mechanism of structural transition involved in the monomeric Abeta to toxic assemblage is yet to be understood at the molecular level. Early results indicate that oriented molecular crowding has a profound effect on their assemblage formation. In this work, we have studied how different microenvironments affect the conformational transitions of one of the active amyloid beta-peptide fragments (Abeta(25-35)). Spectroscopic techniques such as CD and Fourier transform infrared spectroscopy were used. It was observed that a stored peptide concentrates on dissolution in methanol adopts a minor alpha-helical conformation along with unordered structures. On changing the methanol concentration in the solvated film form, the conformation switches to the antiparallel beta-sheet structure on the hydrophilic surface, whereas the peptide shows transition from a mixture of helix and unordered structure into predominantly a beta-sheet with minor contribution of helix structure on the hydrophobic surface. Our present investigations indicate that the conformations induced by the different surfaces dictate the gross conformational preference of the peptide concentrate.  相似文献   

8.
B Mao 《Biophysical journal》1991,60(4):966-973
The mass-weighted molecular dynamics simulation method was developed previously for sampling the multidimensional conformational space of linear and cyclic polypeptides and studying their conformational flexibility. Herein results from molecular dynamics simulations of the protein-ligand complex of the aspartyl protease rhizopuspepsin and a polypeptide inhibitor are reported. The dihedral conformational space sampling for the linear peptide inhibitor in situ was found to be increased in the mass-weighted simulation as in other molecular systems previously studied. More significantly, the physical space of the enzyme binding pocket was also sampled efficiently in the simulations and multiple binding sites were identified for the inhibitor. These results suggest that it may be possible now to study, by computer simulations, the putative initial enzyme-inhibitor complex suggested experimentally from the time-dependent kinetics of enzyme inhibition by slow-binding inhibitors (Morrison, J. F., and C. T. Walsh. 1988. Adv. Enzymol. 61:201), and/or conformational substates in protein-ligand complexes suggested in the study of reassociation dynamics of myoglobin and carbon monoxide following photolysis (Austin, R. H., K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. 1975. Biochemistry. 14:5355). Moreover, the intermediate binding steps and the molecular flexibility of the inhibitor shown in the MWMD simulation may have crucial roles in the ligand binding process.  相似文献   

9.
We have studied two different beta-peptides in methanol using explicit solvent molecular dynamics simulations and the GROMOS 53A6 force field: a heptapeptide (peptide 1) expected to form a left-handed 3(14)-helix, and a hexapeptide (peptide 2) expected to form a beta-hairpin in solution. Our analysis has focused on identifying and analyzing the stability of the dominant secondary structure conformations adopted by the peptides, as well as on comparing the experimental NOE distance upper bounds and 3J-coupling values with their counterparts calculated on the basis of the simulated ensembles. Moreover, we have critically compared the present results with the analogous results obtained with the GROMOS 45A3 (peptide 1) and 43A1 (peptide 2) force fields. We conclude that within the limits of conformational sampling employed here, the GROMOS 53A6 force field satisfactorily reproduces experimental findings regarding the behavior of short beta-peptides, with accuracy that is comparable to but not exceeding that of the previous versions of the force field. GCE legend Conformational clustering analysis of the simulated ensemble of a ss-hexapeptide with two different simulation setups (a and b). The central members of all of the clusters populating more than 5% of all of the structures are shown, together with the most dominant hydrogen bonds and the corresponding percentages of cluster members containing them.  相似文献   

10.
In the current report, we provide a quantitative analysis of the convergence of the sampling of conformational space accomplished in molecular dynamics simulations of membrane proteins of duration in the order of 10 nanoseconds. A set of proteins of diverse size and topology is considered, ranging from helical pores such as gramicidin and small beta-barrels such as OmpT, to larger and more complex structures such as rhodopsin and FepA. Principal component analysis of the C(alpha)-atom trajectories was employed to assess the convergence of the conformational sampling in both the transmembrane domains and the whole proteins, while the time-dependence of the average structure was analyzed to obtain single-domain information. The membrane-embedded regions, particularly those of small or structurally simple proteins, were found to achieve reasonable convergence. By contrast, extra-membranous domains lacking secondary structure are often markedly under-sampled, exhibiting a continuous structural drift. This drift results in a significant imprecision in the calculated B-factors, which detracts from any quantitative comparison to experimental data. In view of such limitations, we suggest that similar analyses may be valuable in simulation studies of membrane protein dynamics, in order to attach a level of confidence to any biologically relevant observations.  相似文献   

11.
The effect of motional averaging when relating structural properties inferred from nuclear magnetic resonance (NMR) experiments to molecular dynamics simulations of peptides is considered. In particular, the effect of changing populations of conformations, the extent of sampling, and the sampling frequency on the estimation of nuclear Overhauser effect (NOE) inter-proton distances, vicinal (3)J-coupling constants, and chemical shifts are investigated. The analysis is based on 50-ns simulations of a beta-heptapeptide in methanol at 298 K, 340 K, 350 K, and 360 K. This peptide undergoes reversible folding and samples a significant proportion of the available conformational space during the simulations, with at 298 K being predominantly folded and at 360 K being predominantly unfolded. The work highlights the fact that when motional averaging is included, NMR data has only limited capacity to distinguish between a single fully folded peptide conformation and various mixtures of folded and unfolded conformations. Proteins 1999;36:542-555.  相似文献   

12.
Nguyen PH  Mu Y  Stock G 《Proteins》2005,60(3):485-494
A replica exchange molecular dynamics (REMD) simulation of a bicyclic azobenzene peptide in explicit dimethyl sulfoxide solution is presented in order to characterize the conformational structures and energy landscape of a photoswitchable peptide. It is shown that an enhanced-sampling technique such as the REMD method is essential to obtain a converged conformational sampling of the peptide at room temperature. This is because conventional MD simulations of less than approximately 100-ns length are either trapped in local minima (at 295 K) or-if run at high temperature-do not resemble the room-temperature REMD results. Calculating various nuclear Overhauser effects (NOEs) and (3)J-couplings, a good overall agreement between the REMD simulations and the NMR experiments of Renner et al. (Biopolymers 2000;54:501-514) is found. In particular, the REMD study confirms the general picture drawn by Renner et al. that the trans-isomer of the azobenzene peptide exhibits a well-defined structure, while the cis-isomer is a conformational heterogeneous system; that is, the trans-isomer occurs in 2 well-defined conformers, while the cis-isomer represents an energetically frustrated system that leads to an ensemble of conformational structures. Employing a principal component analysis of the REMD data, the free energy landscape of the systems is studied at various temperatures. The implications for the folding and unfolding pathways of the system are discussed.  相似文献   

13.
Biological systems provide a complex environment that can be understood in terms of its dielectric properties. High concentrations of macromolecules and cosolvents effectively reduce the dielectric constant of cellular environments, thereby affecting the conformational sampling of biomolecules. To examine this effect in more detail, the conformational preference of alanine dipeptide, poly-alanine, and melittin in different dielectric environments is studied with computer simulations based on recently developed generalized Born methodology. Results from these simulations suggest that extended conformations are favored over alpha-helical conformations at the dipeptide level at and below dielectric constants of 5-10. Furthermore, lower-dielectric environments begin to significantly stabilize helical structures in poly-alanine at epsilon = 20. In the more complex peptide melittin, different dielectric environments shift the equilibrium between two main conformations: a nearly fully extended helix that is most stable in low dielectrics and a compact, V-shaped conformation consisting of two helices that is preferred in higher dielectric environments. An additional conformation is only found to be significantly populated at intermediate dielectric constants. Good agreement with previous studies of different peptides in specific, less-polar solvent environments, suggest that helix stabilization and shifts in conformational preferences in such environments are primarily due to a reduced dielectric environment rather than specific molecular details. The findings presented here make predictions of how peptide sampling may be altered in dense cellular environments with reduced dielectric response.  相似文献   

14.
The stability and (un)folding of the 19-residue peptide, SCVTLYQSWRYSQADNGCA, corresponding to the first beta-hairpin (residues 10 to 28) of the alpha-amylase inhibitor tendamistat (PDB entry 3AIT) has been studied by molecular dynamics simulations in explicit water under periodic boundary conditions at several temperatures (300 K, 360 K and 400 K), starting from various conformations for simulation lengths, ranging from 10 to 30 ns. Comparison of trajectories of the reduced and oxidized native peptides reveals the importance of the disulphide bridge closing the beta-hairpin in maintaining a proper turn conformation, thereby insuring a proper side-chain arrangement of the conserved turn residues. This allows rationalization of the conservation of those cysteine residues among the family of alpha-amylase inhibitors. High temperature simulations starting from widely different initial configurations (native beta-hairpin, alpha and left-handed helical and extended conformations) begin sampling similar regions of the conformational space within tens of nanoseconds, and both native and non-native beta-hairpin conformations are recovered. Transitions between conformational clusters are accompanied by an increase in energy fluctuations, which is consistent with the increase in heat capacity measured experimentally upon protein folding. The folding events observed in the various simulations support a model for beta-hairpin formation in which the turn is formed first, followed by hydrogen bond formation closing the hairpin, and subsequent stabilization by side-chain hydrophobic interactions.  相似文献   

15.
Three 1 ns length molecular dynamics simulations of an RGD peptide (Ac-Pen-Arg-Gly-Asp-Cys-NH2, with Pen denoting penicillamine) have been performed in aqueous solution, one for the disulfide bridged, and two for the unbridged form. The trajectories were analyzed to identify conformations explored by the two forms and to calculate several properties: NMR vicinal coupling constants, order parameters, dipole moments and diffusion coefficients, in an effort to describe the physical role of the disulfide bond. The cyclic peptide was able to explore several distinct backbone conformations centered around a turn-extended-turn structure. However, its flexibility was limited and it appeared to be 'locked in' into a a family of structures characterized by a high dipole moment and a well-defined conformation of the pharmacophore, which has been previously identified as biologically active. Excellent agreement between the simulated and observed NMR vicinal coupling constants indicates that realistic structures were sampled in the cyclic peptide simulation. The linear form of the peptide was much more flexible than the cyclic one. In the two independent 1 ns simulations of the linear form the explored conformations could be roughly grouped into two classes, of cyclic-like and extended type. Within each simulation the peptide switched between the two classes of structures several times. Exact matches between conformations in the two linear peptide simulations were not found; several conformational regions with backbone rms deviations below 1A were identified, suggesting that representative structures of the linear form have also been identified. In the linear peptide simulations the RGD pharmacophore is able to adopt a wide range of conformations, including the one preferred by the cyclic form. The lower biological activity of the linear peptide compared to the cyclic one may be correlated with the lower population of this structure in the absence of the disulfide bond.  相似文献   

16.
Kannan S  Zacharias M 《Proteins》2007,66(3):697-706
During replica exchange molecular dynamics (RexMD) simulations, several replicas of a system are simulated at different temperatures in parallel allowing for exchange between replicas at frequent intervals. This technique allows significantly improved sampling of conformational space and is increasingly being used for structure prediction of peptides and proteins. A drawback of the standard temperature RexMD is the rapid increase of the replica number with increasing system size to cover a desired temperature range. In an effort to limit the number of replicas, a new Hamiltonian-RexMD method has been developed that is specifically designed to enhance the sampling of peptide and protein conformations by applying various levels of a backbone biasing potential for each replica run. The biasing potential lowers the barrier for backbone dihedral transitions and promotes enhanced peptide backbone transitions along the replica coordinate. The application on several peptide cases including in all cases explicit solvent indicates significantly improved conformational sampling when compared with standard MD simulations. This was achieved with a very modest number of 5-7 replicas for each simulation system making it ideally suited for peptide and protein folding simulations as well as refinement of protein model structures in the presence of explicit solvent.  相似文献   

17.
The thermodynamics of folding and unfolding of a beta-heptapeptide in methanol solution has been studied at four different temperatures, 298 K, 340 K, 350 K, and 360 K, by molecular dynamics simulation. At each of these temperatures, the 50-ns simulations were sufficient to generate an equilibrium distribution between a relatively small number of conformations (approximately 10(2)), showing that, even above the melting temperature (approximately 340 K), the peptide does not randomly sample conformational space. The free energy of folding and the free energy difference between pairs of conformations have been calculated from their relative populations. The experimentally determined folded conformation at 298 K, a left-handed 3(1)-helix, is at each of the four temperatures the predominant conformation, with its probability and average lifetime decreasing with increasing temperature. The most common intermediates of folding and unfolding are also the same at the four temperatures. Paths and rates of interconversion between different conformations have been determined. It has been found that folding can occur through multiple pathways, not necessarily downhill in free energy, although the final step involves a reduced number of intermediates.  相似文献   

18.
19.
20.
The structural properties of melittin, a small amphipathic peptide found in the bee venom, are investigated in three different environments by molecular dynamics simulation. Long simulations have been performed for monomeric melittin solvated in water, in methanol, and shorter ones for melittin inserted in a dimyristoylphosphatidylcholine bilayer. The resulting trajectories were analysed in terms of structural properties of the peptide and compared to the available NMR data. While in water and methanol solution melittin is observed to partly unfold, the peptide retains its structure when embedded in a lipid bilayer. The latter simulation shows good agreement with the experimentally derived 3J-coupling constants. Generally, it appears that higher the stability of the helical conformation of melittin, lower is the dielectric permittivity of the environment. In addition, peptide-lipid interactions were investigated showing that the C-terminus of the peptide provides an anchor to the lipid bilayer by forming hydrogen bonds with the lipid head groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号