首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
TNF activates endothelial cells to express cell surface molecules that are necessary to recruit a local infiltrate of leukocytes. Because the actions of this proinflammatory cytokine are not species restricted, we investigated whether human TNF can up-regulate porcine endothelial adhesion molecules to elicit human T cell infiltration and damage of pig skin xenografts in a chimeric immunodeficient mouse model. We have previously demonstrated the vigorous rejection of human skin allografts and the absence of injury to porcine skin xenografts in human PBMC-SCID/beige mice. Intradermal administration of human TNF at high doses (600 or 2000 ng) caused nonspecific inflammatory damage of pig skin grafts, whereas low concentrations of TNF (60 or 200 ng) resulted in human PBMC-dependent injury of porcine endothelial cells. There was a strong correlation among pig skin xenograft damage, human T cell infiltration, and the TNF-induced up-regulation of swine MHC class I and class II molecules, VCAM-1, and, in particular, the de novo expression of porcine E-selectin. The microvascular damage and leukocytic infiltration elicited by TNF were enhanced by porcine IFN-gamma, suggesting that xenografts may be less prone to cytokine-mediated injury due to the species-restricted effects of recipient IFN-gamma. Our results indicate that maintenance of a quiescent endothelium, which does not express E-selectin or other activation-dependent adhesion molecules, is important in preventing human anti-porcine T cell xenoresponses in vivo and that TNF signaling molecules and TNF-responsive gene products are appropriate therapeutic targets to protect against human T cell-mediated rejection of pig xenografts.  相似文献   

4.
We have injected human TNF, LPS, and IL-4 into the skin of baboons to examine regulation of endothelial leukocyte adhesion molecules (ELAM) in vivo and to determine which endothelial adhesion molecules correlate temporally and spatially with cytokine-induced T cell infiltration. The expression of adhesion molecules ELAM-1 (E-selectin), VCAM-1, and ICAM-1 (CD54) were quantified by immunocytochemical staining of frozen sections obtained from skin biopsies; T cell infiltration was measured by immunocytochemical staining of CD3+ T cells in serial sections. We found that injection of TNF causes late (24 to 48 h) T cell infiltration whereas injection of LPS, in doses that do not cause tissue necrosis, does not. The ability of TNF (but not LPS) to recruit T cells correlates with the ability of TNF to cause sustained endothelial cell adhesion molecule expression. Expression of VCAM-1 on post-capillary venules showed the highest degree of spatial localization with infiltrates. IL-4, although not proinflammatory by itself, can cause T cell infiltration in combination with an ineffective dose of TNF. The ability of IL-4 to augment TNF-induced inflammation best correlates with the ability of the combination of IL-4 and TNF to increase endothelial VCAM-1 expression. In contrast, IL-4 does not promote T cell infiltration or endothelial VCAM-1 expression in combination with LPS. In cytokine-injected tissues, VCAM-1 is also expressed on connective tissue cells other than endothelium, including smooth muscle and perineural cells, where it is induced by cytokines in parallel with endothelial VCAM-1. Overall, our data support the hypothesis that endothelial VCAM-1 expression contributes to T cell extravasation at sites of inflammation. Furthermore, we find that IL-4, a product a Ag-activated T cells, can interact with TNF to selectively promote VCAM-1 expression and the development of T cell-rich infiltrates, characteristic of Ag-induced inflammatory reactions.  相似文献   

5.
Endothelial-monocyte interactions are regulated by adhesion molecules and key in the development of vascular inflammatory disease. Peroxisome proliferator-activated receptor (PPAR) γ activation in endothelial cells is recognized to mediate anti-inflammatory effects that inhibit monocyte rolling and adhesion. Herein, evidence is provided for a novel mechanism for the anti-inflammatory effects of PPARγ ligand action that involves inhibition of proinflammatory cytokine-dependent up-regulation of endothelial N-glycans. TNFα treatment of human umbilical vein endothelial cells increased surface expression of high mannose/hybrid N-glycans. A role for these sugars in mediating THP-1 or primary human monocyte rolling and adhesion was indicated by competition studies in which addition of α-methylmannose, but not α-methylglucose, inhibited monocyte rolling and adhesion during flow, but not under static conditions. This result supports the notion that adhesion molecules provide scaffolds for sugar epitopes to mediate adhesion with cognate receptors. A panel of structurally distinct PPARγ agonists all decreased TNFα-dependent expression of endothelial high mannose/hybrid N-glycans. Using rosiglitazone as a model PPARγ agonist, which decreased TNFα-induced high mannose N-glycan expression, we demonstrate a role for these carbohydrate residues in THP-1 rolling and adhesion that is independent of endothelial surface adhesion molecule expression (ICAM-1 and E-selectin). Data from N-glycan processing gene arrays identified α-mannosidases (MAN1A2 and MAN1C1) as targets for down-regulation by TNFα, which was reversed by rosiglitazone, a result consistent with altered high mannose/hybrid N-glycan epitopes. Taken together we propose a novel anti-inflammatory mechanism of endothelial PPARγ activation that involves targeting protein post-translational modification of adhesion molecules, specifically N-glycosylation.  相似文献   

6.
We have investigated whether TNF-induced changes in human endothelial cell (EC) surface Ag expression are mediated by protein kinase C (PKC). This suggestion arose from the observations that PMA, a potent PKC activator, can mimic TNF by inducing expression of endothelial leukocyte adhesion molecule 1, intercellular adhesion molecule 1 (ICAM-1), and class I MHC molecules on human EC. However, in contrast to the actions of PMA, TNF neither causes membrane translocation of PKC nor induces the phosphorylation of the myristoylated alanine-rich C kinase substrate, two measures of PKC activation. Moreover, the PKC inhibitor staurosporine can block PMA-induced endothelial leukocyte adhesion molecule 1 expression at 4 h, but does not inhibit the actions of TNF. At 24 h, staurosporine itself induces intercellular adhesion molecule 1 and class I MHC, and acts additively with TNF. Twenty four hour treatment with PMA causes loss of PKC. We propose that at 24 h, staurosporine and PMA share a mechanism of action, namely diminution of PKC activity. However, 24 h treatment with TNF does not reduce the amount of PKC nor does it prevent activation of PKC by PMA. We conclude that TNF effects in EC are not mediated by PKC activation or inactivation.  相似文献   

7.
Induction of the adhesion molecules ELAM-1 and ICAM-1 on endothelial cells is a key pro-inflammatory effect of tumour necrosis factor (TNF). Earlier work in non-human systems has suggested that unlike other cell types, endothelial cells interact with the N-terminus of the TNF molecule, thereby implying novel TNF receptors on endothelial cells. This is also supported by 125I-TNF cross-linking studies on bovine endothelial cells. The present study aimed to see whether TNF induction of ELAM-1 and ICAM-1 on human umbilical vein endothelial cells (HUVECs) involved novel TNF-receptor interactions. Three approaches were employed. First, antibodies directed at different sites on the TNF molecule were tested for inhibition of TNF-induction of ELAM-1 and ICAM-1 on HUVECs. Inhibition was seen only with antibodies reacting with epitopes outside the N-terminal region. Second, an N-terminal TNF peptide (residues 1-26) failed to induce ELAM-1 and ICAM-1 on HUVECs or antagonise TNF induction of these molecules. Third, HUVEC/125I-TNF cross-linking revealed a major complex characteristic of the known 55 kDa TNF receptor: this was confirmed with receptor-specific monoclonal antibodies. It is concluded that (a) the same part of the TNF molecule interacts with TNF-receptors on HUVECs and other cell types and (b) TNF induction of ELAM-1 and ICAM-1 on HUVECs is mediated via the well-characterized 55 kDa TNF receptor.  相似文献   

8.
Since adhesion of neutrophils (PMN) to endothelial cells may influence PMN activation responses, we examined whether adhesion of PMN to TNF alpha-activated human umbilical vein endothelial cells (HUVEC) stimulates leukotriene B4 (LTB4) production. Endothelial adhesivity towards PMN increased after HUVEC pretreatment with TNF alpha for 4 h. LTB4 production increased markedly in response to stimulation with arachidonic acid (20 microM) when PMN were added to the hyperadhesive HUVEC. In contrast, stimulation of PMN in suspension did not potentiate LTB4 production. LTB4 production persisted when PMN were applied to TNF alpha-pretreated HUVEC fixed with 1% paraformaldehyde excluding the possibility that metabolic activity of endothelium participates in this response. PMN adhesion to plastic and gelatin also enhanced LTB4 indicating that adhesion was a critical event in inducing LTB4 production. We used monoclonal antibodies (mAb) to adhesion molecules on endothelial cells (i.e., endothelial leukocyte adhesion molecule-1 (ELAM-1) and intercellular adhesion molecule-1 (ICAM-1)) or on PMN (CD18) to assess the role of PMN adhesion to the activated endothelium on LTB4 potentiation. Both anti-ELAM-1 mAb and anti-ICAM-1 mAb inhibited PMN adhesion (by 55 and 41%, respectively) as well as LTB4 production (by 65 and 50%, respectively). Anti-CD18 mAb also reduced the adhesion (65%) and the LTB4 production (66%). Furthermore, combination of anti-ELAM-1 mAb (H18/7) and anti-ICAM-1 mAb (RR1/1) or of anti-ELAM-1 mAb (H18/7) and anti-CD18 mAb (IB4) had an additive effect in inhibiting both PMN adhesion as well as LTB4 production. PMN adherence to immobilized recombinant soluble rELAM-1 or rICAM-1 also increased LTB4 production, which was prevented with relevant mAbs. However, neither rELAM-1 nor rICAM-1 stimulated LTB4 production of PMN in suspension. We conclude that PMN adhesion to TNF alpha-stimulated endothelial cells enhances LTB4 production by PMN, a response activated by binding of PMN to expressed endothelial cell surface adhesion molecules.  相似文献   

9.
Weiser S  Miu J  Ball HJ  Hunt NH 《Cytokine》2007,37(1):84-91
Changes to the cerebral microvasculature are evident during cerebral malaria (CM). Activation of the endothelium is likely to be due to the actions of cytokines, circulating levels of which are elevated during CM. Endothelial cells are known to up-regulate the expression of cellular adhesion molecules, which can lead to cellular sequestration and obstruction of vessels. However, it is unknown whether cytokines synergise in the up-regulation of the adhesion molecules involved in CM. In this study, the mRNA and/or protein expression of the adhesion molecules vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin and E-Selectin were examined in a mouse brain endothelial cell line. Endothelial cells were stimulated with interferon-gamma (IFN-gamma), tumour necrosis factor (TNF) and lymphotoxin-alpha (LT-alpha), alone or in combination. The expression of ICAM-1, VCAM-1, P-selectin and E-Selectin mRNA in mouse brain endothelial cells by TNF and/or LT-alpha was found to be significantly enhanced in the presence of IFN-gamma. The same synergistic effect was found when analyzing ICAM-1 protein expression in cytokine stimulated mouse brain endothelial cells. The findings show that cytokines can synergise to influence gene expression and protein expression in a mouse brain endothelial cell line.  相似文献   

10.
In this study, the anti-oxidative activities of 70% ethanol extract from Curcuma aromatica Salisb. (CAS) and curcumin (CUR) were studied. The CAS extracts and CUR were both found to have a potent scavenging activity against the reactive species tested, as well as an inhibitory effect on LDL oxidation. Cultured human umbilical vein endothelial cells (HUVECs) were stimulated with tumour necrosis factor α (TNFα), expression of intracellular reactive oxygen species (ROS), nitric oxide (NO), endothelial nitric oxide synthase (eNOS), lectin-like oxidised LDL receptor-1 (LOX-1), adhesion molecules, inhibitory kappa Bα (IκBα) and nuclear factor kappa B (NFκB) were measured. In HUVECs stimulated with TNFα, CUR significantly suppressed expression of the intracellular ROS, LOX-1 and adhesion molecules, degradation of IκBα and translocation of NFκB, while inducing production of NO by phosphorylation of eNOS (p <0.05). In conclusion, CAS and CUR may modulate lipoprotein composition and attenuate oxidative stress by elevated antioxidant processes.  相似文献   

11.
12.
13.
It is suggested that mast cells contribute to cell recruitment in inflammation through the upregulation of endothelial adhesion molecules. P-selectin and intercellular adhesion molecule(ICAM)-1 are two key adhesion molecules that have been associated indirectly with mast cell activity. The canine C2 mastocytoma cell line and primary cultures of canine carotid endothelial cells were used to establish a new in vitro model to help study the interaction between mast cells and endothelial cells. Carotid endothelial cells were incubated with mast cell mediators to uncover their effect on endothelial ICAM-1 and P-selectin expression. To assess the relative contributions of tumour necrosis factor (TNF)-alpha and histamine to such effect, an H1 antihistamine and a TNF-alpha blocking antibody were used. Prior to activation by mast cell mediators, P-selectin was expressed only within the cytoplasm, and ICAM-1 was constitutively expressed on the surface of the canine carotid endothelial cells. Both adhesion molecules were enhanced significantly and strongly upon mast cell activation at various time points. Unstored TNF-alpha was fully responsible for ICAM-1 upregulation. P-selectin was up-regulated by both preformed and newly synthesized mast cell mediators, but neither histamine nor TNF-alpha accounted for such an effect. Therefore,a new model is proposed in which the pro-inflammatory effect of mast cells on endothelial cells can be studied in vitro.In this model, it has been demonstrated that only TNF-alpha accounts for the overexpression of ICAM-1 induced by mast cells, and that mast cells up-regulate P-selectin expression through a histamine-independent mechanism.  相似文献   

14.
Vascular perturbation is a hallmark of severe forms of dengue disease. We show here that antibody-enhanced dengue virus infection of primary human cord blood-derived mast cells (CBMCs) and the human mast cell-like line HMC-1 results in the release of factor(s) which activate human endothelial cells, as evidenced by increased expression of the adhesion molecules ICAM-1 and VCAM-1. Endothelial cell activation was prevented by pretreatment of mast cell-derived supernatants with a tumor necrosis factor (TNF)-specific blocking antibody, thus identifying TNF as the endothelial cell-activating factor. Our findings suggest that mast cells may represent an important source of TNF, promoting vascular endothelial perturbation following antibody-enhanced dengue virus infection.  相似文献   

15.
TNF plays a crucial role in the pathogenesis of acute lung injury. However, the expression profile of its two receptors, p55 and p75, on pulmonary endothelium and their influence on TNF signaling during lung microvascular inflammation remain uncertain. Using flow cytometry, we characterized the expression profile of TNF receptors on the surface of freshly harvested pulmonary endothelial cells (PECs) from mice and found expression of both receptors with dominance of p55. To investigate the impact of stimulating individual TNF receptors, we treated wild-type and TNF receptor knockout mice with intravenous TNF and determined surface expression of adhesion molecules (E-selectin, VCAM-1, ICAM-1) on PECs by flow cytometry. TNF-induced upregulation of all adhesion molecules was substantially attenuated by absence of p55, whereas lack of p75 had a similar but smaller effect that varied between adhesion molecules. Selective blockade of individual TNF receptors by specific antibodies in wild-type primary PEC culture confirmed that the in vivo findings were due to direct effects of TNF receptor inhibition on endothelium and not other cells (e.g., circulating leukocytes). Finally, we found that PEC surface expression of p55 dramatically decreased in the early stages of endotoxemia following intravenous LPS, while no change in p75 expression was detected. These data demonstrate a crucial in vivo role of p55 and an auxiliary role of p75 in TNF-mediated adhesion molecule upregulation on PECs. It is possible that the importance of the individual receptors varies at different stages of pulmonary microvascular inflammation following changes in their relative expression.  相似文献   

16.
17.
We recently reported that the single nucleotide polymorphisms of the lymphotoxin-(LT)α gene, a member of the tumor necrosis factor (TNF) family, are closely related to acute myocardial infarction; however, the precise mechanism of LTα signaling in atherogenesis remains unclear. We investigated the role of LTα3, a secreted homotrimer of LTα, in monocyte-endothelial cell adhesion using cultured human umbilical vein endothelial cells (HUVEC). We found that LTα3 induced cell adhesion molecules and activated NF-κB p50 and p65. LTα3 also induced phosphorylation of Akt, phosphorylation and degradation of IκB, nuclear translocation of p65, and increased adhesion of THP1 monocytes to HUVEC. These effects were mediated by TNF receptor (TNFR) I and attenuated by the phosphatidylinositol triphosphate-kinase (PI3K) inhibitors LY294002 and Wortmannin. Thus, LTα3 mediates the monocyte-endothelial interaction via the classical NF-κB pathway following TNFR I/PI3K activation, indicating it may play a role in the development of coronary artery disease.  相似文献   

18.

Background

Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells.

Methods

Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting.

Results

The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα.

Conclusion

The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.  相似文献   

19.
FK506 suppresses activation of T cells; however, it down-regulates E-selectin, ICAM-1 and VCAM-1 expression in inflamed tissues. In this study, we investigated the effect of FK506 on expression of those adhesion molecules on human vascular endothelial cells (HMVEC). Culture supernatant from peripheral blood mononuclear cells (PBMC) stimulated with anti-CD3 plus anti-CD2 antibodies effectively induced the expression of E-selectin, ICAM-1 and VCAM-1 on HMVEC, and treatment with FK506 down-regulated their expression. Culture supernatant contained tumor necrosis factor (TNF) alpha and interleukin (IL)-1beta, which effectively induced adhesion molecules, and FK506 suppressed both cytokine secretions. TNFalpha content in culture supernatant was parallel to the induction of adhesion molecules by the culture supernatant. IL-1beta content was not enough to induce those adhesion molecules. Anti-TNFalpha antibody completely inhibited those expressions. FK506 did not inhibit either TNFalpha- or IL-1beta-induced expression of adhesion molecules, or viability of HMVEC. These results indicate that FK506 suppresses migration of inflammatory cells through the inhibition of TNFalpha secretion from leukocytes.  相似文献   

20.
Toll-like receptor 4 (TLR4) is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA), a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO) inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT) mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号