首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low molecular mass serine proteinase inhibitors isolated from human articular cartilage, intervertebral disc, meniscus, and costal cartilage were compared chromatographically. Similar charge and size properties were exhibited when these inhibitors were examined by gel permeation and cation exchange chromatography. The individual proteinase inhibitory species separated by these procedures all cross-reacted with a polyclonal antibody raised against the mucous proteinase inhibitors (MPIs) obtained from human bronchial secretions, however the distribution of these MPI-like species varied with the origin of the connective tissue. The major inhibitory species present in human articular cartilage and intervertebral disc were purified to homogeneity using gel filtration, cation exchange, trypsin affinity and high performance reverse phase chromatography. The amino-terminal sequences of the purified cartilage intervertebral disc inhibitors was found to be identical to the published sequence of MPIs isolated from parotid and seminal secretions. These findings indicate that the endogenous small molecular mass cationic serine proteinase inhibitory proteins present in human cartilaginous connective tissues are members of the MPI family of proteinase inhibitors.  相似文献   

2.
Rat alpha 1-inhibitor-3 is a 180-kDa monomeric proteinase inhibitor found in high concentration in rat plasma. By several criteria it has been shown to be a member of the family of alpha-macroglobulin proteinase inhibitors often exemplified by the tetrameric human alpha 2-macroglobulin. We have used limited proteolysis of rat alpha 1-inhibitor-3 to probe the domain structure of this family of proteins. Proteinases of different specificities, including trypsin, chymotrypsin, thermolysin, and Staphylococcus aureus V8 proteinase, were employed and a common fragmentation pattern was observed when the reaction products were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These fragments were electrotransferred to polyvinylidene difluoride membranes and subjected to NH2-terminal amino acid sequence analysis in order to position them within the context of the primary structure. The fragmentation pattern may define the domain structure of alpha 1-inhibitor-3 and serve as a model for the domain organization of the family of alpha-macroglobulin proteinase inhibitors.  相似文献   

3.
1. Serum proteinase precursor was found in plasma protein fractions I and III of Cohn. Inhibitors of serum proteinase, leucoproteinase, trypsin, and papain were found in fractions IV-1 and IV-4, and to a lesser extent in fractions V and I. 2. Pancreatic, soy bean, lima bean, and egg white inhibitors inhibited trypsin stoichiometrically. Pancreatic inhibitor had comparable inhibitory activity against serum proteinase; soy bean inhibitor had somewhat less, lima bean inhibitor even less, and egg white inhibitor very little. None of these inhibitors appreciably inhibited leucoproteinase or papain. 3. Serum and fractions IV - 1 and IV - 4 had marked inhibitory activity against trypsin and leucoproteinase, and somewhat less against serum proteinase and papain. The inhibitory activity of the plasma proteins against trypsin and leucoproteinase was due almost entirely to fractions IV - 1 and IV - 4; against serum proteinase and papain fraction V was slightly more important. The "reconstituted plasma proteins" accounted for 8 to 25 per cent of the proteinase-inhibitory activity of whole serum or plasma. 4. The proteinase-inhibitory activity of serum, plasma protein fractions, and soy bean inhibitor was heat labile, while that of pancreatic, lima bean, and egg white inhibitors was relatively heat stable. 5. Reducing and oxidizing agents, in very high concentration, inhibited serum proteinase, as well as trypsin and leucoproteinase. These proteinases were not influenced by mercurial sulfhydryl inhibitors, indicating that free sulfhydryl groups do not play an important part in their activity.  相似文献   

4.
The turkey reproductive tract and seminal plasma contain a serine proteinase inhibitor that seems to be unique for the reproductive tract. Our experimental objective was to isolate, characterize and cDNA sequence the Kazal family proteinase inhibitor from turkey seminal plasma and testis. Seminal plasma contains two forms of a Kazal family inhibitor: virgin (Ia) represented by an inhibitor of moderate electrophoretic migration rate (present also in the testis) and modified (Ib, a split peptide bond) represented by an inhibitor with a fast migration rate. The inhibitor from the seminal plasma was purified by affinity, ion-exchange and reverse phase chromatography. The testis inhibitor was purified by affinity and ion-exchange chromatography. N-terminal Edman sequencing of the two seminal plasma inhibitors and testis inhibitor were identical. This sequence was used to construct primers and obtain a cDNA sequence from the testis. Analysis of a cDNA sequence indicated that turkey proteinase inhibitor belongs to Kazal family inhibitors (pancreatic secretory trypsin inhibitors, mammalian acrosin inhibitors) and caltrin. The turkey seminal plasma Kazal inhibitor belongs to low molecular mass inhibitors and is characterized by a high value of the equilibrium association constant for inhibitor/trypsin complexes.  相似文献   

5.
Potato cysteine proteinase inhibitors (PCPIs) represent a distinct group of proteins as they show no homology to any other known cysteine proteinase inhibitor superfamilies, but they all belong to the Kunitz-type soybean trypsin inhibitor family. cDNA clones for five PCPIs have been isolated and sequenced. Amino acid substitutions occurring in the limited regions forming loops on the surface of these proteins suggest a further classification of PCPIs into three subgroups. Accumulation of PCPI was observed in vacuoles of stems after treatment with jasmonic acid (JA) using immunocytochemical localisation, implying that these inhibitors are part of a potato defence mechanism against insects and pathogens. Genomic DNA analysis show that PCPIs form a multigene family and suggest that their genes do not possess any introns.  相似文献   

6.
Preparations of new low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat Fagopyrum esculentum seeds by chromatography of seed extracts on trypsin-Sepharose 4B, Mono-Q and Mono-S ion-exchangers. Their molecular masses, determined by mass spectrometry, were equal to 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c) and 6031 daltons (BWI-4c). All inhibitors possessed high pH-stability in the pH range 2-12 and thermostability. In addition to trypsin, BWI-3c and BWI-4c inhibitors inhibited chymotrypsin and subtilisin-like proteases. The inhibition constants (Ki) for trypsin, chymotrypsin and subtilisin by the studied inhibitors were determined. The N-terminal sequences of all inhibitors were established: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues) and BWI-4c (20 residues). According to the physicochemical properties and N-terminal amino acid sequences, buckwheat seed protease inhibitors BWI-3c and BWI-4c are suggested to belong to the potato proteinase inhibitor I family.  相似文献   

7.
Two proteinase inhibitors, DE-1 and DE-3, were purified from Erythrina latissima seeds. Whereas DE-1 inhibits bovine chymotrypsin and not bovine trypsin, DE-3 inhibits trypsin but not chymotrypsin. The molecular weights and the amino acid compositions of the two inhibitors resemble the corresponding properties of the Kunitz-type proteinase inhibitors. The N-terminal primary structure of DE-3 showed homology with soybean trypsin inhibitor (Kunitz) and also with the proteinase inhibitors (A-II and B-II) from Albizzia julibrissin seed.  相似文献   

8.
The complete amino acid sequence of a proteinaceous cysteine proteinase inhibitor from the fruit of avocado (avocado cystatin) is presented. The protein consists of 100 amino acid residues and has a molecular mass of 11,300 Da. Comparison of this sequence with sequences of plant cysteine proteinase inhibitors (phytocystatins), including oryzacystatins I and II from rice seeds, cowpea cystatin, and corn cystatin, showed that the avocado cystatin molecule has 60% and 54% residues identical with the two forms of the rice seed proteins, oryzacystatins I and II, respectively, and 64% and 63% with the cowpea and corn proteins, respectively. The totally conserved sequence, Gln-Val-Val-Ala-Gly, among several of the animal cystatins as well as phytocystatins, is at positions 47-51 in the avocado cystatin molecule.  相似文献   

9.
10.
Serine protease inhibitors (PIs) have been described in many plant species and are universal throughout the plant kingdom, where trypsin inhibitors is the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of 13 selected cultivars/accessions of cowpea. Two cowpea cultivars, Cream7 and Buff, were found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested cultivars for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE‐Sephadex A‐25 column. Cream7‐purified proteins showed two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) corresponding to molecular mass of 17.10 and 14.90 kDa, while the purified protein from Buff cultivar showed a single band corresponding mass of 16.50 kDa. The purified inhibitors were stable at temperature below 60°C and were active at wide range of pH from 2 to 12. The kinetic analysis revealed noncompetitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis, where Buff PI was more effective than Cream7 PI. It may be concluded that cowpea PI gene(s) could be potential insect control protein for future studies in developing insect‐resistant transgenic plants.  相似文献   

11.
Serine proteinase inhibitors are widely distributed in nature and inhibit the activity of enzymes like trypsin and chymotrypsin. These proteins interfere with the physiological processes such as germination, maturation and form the first line of defense against the attack of seed predator. The most thoroughly examined plant serine proteinase inhibitors are found in the species of the families Leguminosae, Graminae, and Solanaceae. Leucaena leucocephala belongs to the family Leguminosae. It is widely used both as an ornamental tree as well as cattle food. We have constructed a three-dimensional model of a serine proteinase inhibitor from L. leucocephala seeds (LTI) complexed with trypsin. The model was built based on its comparative homology with soybean trypsin inhibitor (STI) using the program, MODELLER6. The quality of the model was assessed stereochemically by PROCHECK. LTI shows structural features characteristic of the Kunitz type trypsin inhibitor and shows 39% residue identity with STI. LTI consists of 172 amino acid residues and is characterized by two disulfide bridges. The protein is a dimer with the two chains being linked by a disulfide bridge. Despite the high similarity in the overall tertiary structure, significant differences exist at the active site between STI and LTI. The present study aims at analyzing these interactions based on the available amino acid sequences and structural data. We have also studied some functional sites such as phosphorylation, myristoylation, which can influence the inhibitory activity or complexation with other molecules. Some of the differences observed at the active site and functional sites can explain the unique features of LTI.  相似文献   

12.
The amino acid sequences of four presynaptically active toxins from mamba snake venom (termed 'dendrotoxins') were compared systematically with homologous sequences of members of the proteinase inhibitor family (Kunitz). A comparison based on the complete sequences revealed that relatively few amino acid changes are necessary to abolish antiprotease activity and convert a proteinase inhibitor into a dendrotoxin. When comparison centred only on the sequence segments known to comprise the antiprotease site of bovine pancreatic trypsin inhibitor, the dendrotoxins were clearly classified apart from all the known inhibitors. Since the mode of action of the bovine pancreatic trypsin/kallikrein inhibitor involves beta sheet formation with the enzyme, predictions were obtained for this secondary structure in the region of the 'antiprotease site' throughout the homologues. Again, the dendrotoxins were clearly distinguished from the inhibitors. Structure/activity analyses, based on the crystal structures of inhibitor/enzyme complexes, suggest that unlike proteinase inhibitors, dendrotoxins might specifically co-ordinate the active-site 'catalytic' histidine residues of serine proteases. Although the significance of this remains to be studied, the presynaptic target is expected to involve an as yet uncharacterised member of the serine protease family.  相似文献   

13.
《Insect Biochemistry》1990,20(2):141-147
Four serine proteinase inhibitors have been isolated from hemolymph of fifth instar larvae of Manduca sexta. One of these, an inhibitor specific for elastase, has been previously shown to be a member of the serpin family of serine proteinase inhibitors. Of the three remaining inhibitors, two are specific for chymotrypsin and one for trypsin. The four inhibitors have molecular weights of approx. 47,000 and isoelectric points between 4.4 and 4.8. The four proteins have very similar amino acid compositions, and NH2-terminal sequence analysis suggests that they represent members of a gene family.  相似文献   

14.
An acid-resistant trypsin inhibitor was released from goat serum inter-alpha-trypsin inhibitor and isolated by affinity chromatography. The primary structure of the inhibitor was established and the inhibitory properties were estimated. The inhibitor designed gIK-14 was characterized as a serine proteinase inhibitor from the family of the double-headed Kunitz-type inhibitors as suggested.  相似文献   

15.
Cationic Inhibitors of Serine Proteinases from Buckwheat Seeds   总被引:2,自引:0,他引:2  
Preparations of low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat (Fagopyrum esculentum) seeds by chromatography of seed extract on trypsin-Sepharose 4B, Mono-Q, and Mono-S ion exchangers (FPLC regime). Their molecular masses, determined by mass spectrometry, were 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c), and 6031 daltons (BWI-4c). All of the inhibitors possess high pH- and thermal stability in the pH range 2-12. In addition to trypsin, BWI-3c and BWI-4c inhibited chymotrypsin and subtilisin-like bacterial proteases. The N-terminal sequences of all of the inhibitors were determined: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues), and BWI-4c (20 residues). In their physicochemical properties and N-terminal amino acid sequences, the buckwheat seed trypsin inhibitors BWI-3c and BWI-4c appear to belong to potato proteinase inhibitor I family.  相似文献   

16.
Two trypsin inhibitors, CPPTI-I and CPPTI-II of Mr 3 250 and 7 850, respectively, were isolated from resting white bush seeds. Both inhibitors are cysteine-rich proteins. In addition to trypsin, they inhibit a trypsin-like enzyme isolated from Streptomyces griseus proteinase but they do not act on chymotrypsin, kallikrein or subtilopeptidase A. The isolated inhibitors contain a lysine residue in position P1 of the reactive site.  相似文献   

17.
The complete amino acid sequence of barley trypsin inhibitor   总被引:5,自引:0,他引:5  
The amino acid sequence of barley trypsin inhibitor has been determined. The protein is a single polypeptide consisting of 121 amino acid residues and has Mr = 13,305. No free sulfhydryl groups were detected by Ellman's reagent, which indicates the presence of five disulfide bridges in the molecule. The primary site of interaction with trypsin was tentatively assigned to the arginyl-leucyl residues at positions 33 and 34. On comparison of the sequence of this inhibitor with those of other proteinase inhibitors, we found that the barley trypsin inhibitor could not be classified into any of the established families of proteinase inhibitors (Laskowski, M., Jr., and Kato, I. (1980) Annu. Rev. Biochem. 49, 593-626) and that this inhibitor should represent a new inhibitor family. On the other hand, this trypsin inhibitor showed a considerable similarity to wheat alpha-amylase inhibitor (Kashlan, N., and Richardson, M. (1981) Phytochemistry (Oxf.) 20, 1781-1784) throughout the whole sequence, suggesting a common ancestry for both proteins. This is the first case of a possible evolutionary relationship between two inhibitors directed to totally different enzymes, a proteinase and a glycosidase.  相似文献   

18.
Comparative data on the properties of four thiol proteinase inhibitors, and of four serine proteinase inhibitors (two subtilisin and two trypsin inhibitors) isolated from seeds of Vigna are presented. They were similar in their molecular weights (5000–15,000) and dissociation constants (10?8–10?9m). The range of isoelectric points of the thiol proteinase inhibitors was 6.5 to 10.6, and of the serine proteinase inhibitors was 5.0 to 5.9. The amino acid compositions of one papain isoinhibitor, one of subtilisin, and one of trypsin are presented. Papain inhibitor A1 and subtilisin inhibitor 2a were low in cystine. All of the inhibitors were stable upon heating to 80 °C for 5 min at low pH. The subtilisin inhibitor did not bind to catalytically inactive subtilisin derivatives, whereas the papain inhibitor was stoichiometrically bound to the Hg or thioacetamide derivatives of papain. Incubation of the subtilisin inhibitor with catalytic amounts of subtilisin led to the formation of a modified form with the same inhibitor activity as the native inhibitor but with a different electrophoretic mobility. There was no indication of a similar modification of the papain inhibitor by papain. Separate sites are present on the trypsin-chymotrypsin inhibitors for trypsin and chymotrypsin. The papain inhibitors have the same binding sites for papain and ficin.  相似文献   

19.
A novel serine proteinase inhibitor, DgTI, was purified from Dioclea glabra seeds by acetone precipitation, and ion-exchange and reverse phase chromatography. The inhibitor belongs to the Bowman-Birk family, and its primary sequence, determined by Edman degradation and mass spectrometry, of 67 amino acids is: SSGPCCDRCRCTKSEPPQCQCQDVRLNSCHSACEACVCSHSMPGLCSCLDITHFCHEPCKSSGDDED++ +. Although two reactive sites were determined by susceptibility to trypsin (Lys(13) and His(40)), the inhibitory function was assigned only to the first site. The inhibitor forms a 1:1 complex with trypsin, and Ki is 0.5 x 10(-9) M. Elastase, chymotrypsin, kallikreins, factor Xa, thrombin, and plasmin were not inhibited. By its properties, DgTI is a Bowman-Birk inhibitor with structural and inhibitory properties between the class of Bowman-Birk type I (with a fully active second reactive site), and Bowman-Birk type II (devoid of second reactive site).  相似文献   

20.
1. Slow migrating proteinase inhibitors were isolated from pathological human urine. 2. The N-terminal amino acid sequence including 23 amino acids was identical to the one in pancreatic secretory trypsin inhibitor. 3. The slow migrating proteinase inhibitors occurred in 3 forms with different electrophoretic mobility. 4. Time of flight mass spectrometry showed that the Mw of one of the forms was 6241 while the Mw of another form was 5923. 5. The Ki of complexes with trypsin was determined to be 1 x 10(-10) M, with chymotrypsin and plasmin Ki was 1 x 10(-7) M. Elastase, kallikrein and thrombin were not inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号