首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is much evidence that rheumatoid arthritis is closely linked to angiogenesis. Important angiogenic mediators have been demonstrated in synovium and tenosynovium of rheumatoid joints. VEGF (Vascular Endothelial Growth Factor), expressed in response to soluble mediators such as cytokines and growth factors and its receptors are the best characterized system in the angiogenesis regulation of rheumatoid joints. Moreover, other angiogenic mediators such as platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), epidermal growth factor (EGF), insulin-like growth factor (IGF), hepatocyte growth factor (HGF), transforming growth factor beta (TGF-beta), tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), IL-6, IL-8, IL-13, IL-15, IL-18, angiogenin, platelet activating factor (PAF), angiopoietin, soluble adhesion molecules, endothelial mediator (endoglin) play an important role in angiogenesis in rheumatoid arthritis. On the other hand, endostatin, thrombospondin-1 and -2 are angiogenic inhibitors in rheumatoid arthritis. The persistence of inflammation in rheumatoid joints is a consequence of an imbalance between these inducers and inhibitors of angiogenesis.  相似文献   

2.
Angiogenesis, the formation of new vessels, is important in the pathogenesis of rheumatoid arthritis (RA) and other inflammatory diseases. Chemotactic cytokines termed chemokines mediate the ingress of leukocytes, including neutrophils and monocytes into the inflamed synovium. In this review, authors discuss the role of the most important angiogenic factors and angiogenesis inhibitors, as well as relevant chemokines and chemokine receptors involved in chronic inflammatory rheumatic diseases. RA was chosen as a prototype to discuss these issues, as the majority of studies on the role of angiogenesis and chemokines in inflammatory diseases were carried out in arthritis. However, other systemic inflammatory (autoimmune) diseases including systemic lupus erythematosus (SLE), systemic sclerosis (SSc), Sjögren's syndrome (SS), mixed connective tissue disease (MCTD), polymyositis/dermatomyositis (PM/DM) and systemic vasculites are also discussed in this context. As a number of chemokines may also play a role in neovascularizaton, this issue is also described here. Apart from discussing the pathogenic role of angiogenesis and chemokines, authors also review the regulation of angiogenesis and chemokine production by other inflammatory meditors, as well as the important relevance of neovascularization and chemokines for antirheumatic intervention.  相似文献   

3.
4.
5.
Rheumatoid arthritis (RA) is a chronic and painful clinical condition that leads to progressive joint damage, disability, deterioration in quality of life, and shortened life expectancy. Even mild inflammation may result in irreversible damage and permanent disability. The clinical course according to symptoms may be either intermittent or progressive in patients with RA. In most patients, the clinical course is progressive, and structural damage develops in the first 2 years. The aim of RA management is to achieve pain relief and prevent joint damage and functional loss. Physiotherapy and rehabilitation applications significantly augment medical therapy by improving the management of RA and reducing handicaps in daily living for patients with RA. In this review, the application of physiotherapy modalities is examined, including the use of cold/heat applications, electrical stimulation, and hydrotherapy. Rehabilitation treatment techniques for patients with RA such as joint protection strategies, massage, exercise, and patient education are also presented.  相似文献   

6.
Ceribelli A  Nahid MA  Satoh M  Chan EK 《FEBS letters》2011,585(23):3667-3674
Rheumatoid arthritis (RA) is a chronic and severe autoimmune disease that affects joint tissues, bone, and cartilage. However, the pathogenesis of RA is still unclear. Autoantibodies such as rheumatoid factor and anti-cyclic citrullinated peptide are useful tools for early diagnosis, monitoring disease activity, and predicting prognosis. Recently, many groups have focused their attention on the role of microRNAs in the pathogenesis of RA, as well as a potential biomarker to monitor RA. In fact, the expression of some microRNAs, such as miR-146a, is upregulated in different cell types and tissues in RA patients. MicroRNAs in RA could also be considered as possible future targets for new therapeutic approaches.  相似文献   

7.
In rheumatoid arthritis (RA) tissue macrophages release growth factors, matrix metalloproteinases, cytokines, and chemokines. While in normal joints there is a balance between proinflammatory and anti-inflammatory cytokines, an imbalance between these inducers and inhibitors of inflammation occurs in RA, where macrophages are responsible for inducing inflammation, matrix destruction and angiogenesis.  相似文献   

8.
9.
Decreased number and impaired functions of endothelial progenitor cells (EPCs) leading to impaired vasculogenesis have been associated with rheumatoid arthritis (RA). Defective vasculogenesis has also been implicated in premature atherosclerosis in RA. Recently, early-outgrowth monocytic and late-outgrowth hemangioblastic EPC subsets have been characterized. Hemangioblastic EPCs may exert increased numbers in active RA and may play a role in vascular repair underlying RA.  相似文献   

10.
The abundance and activation of macrophages in the inflamed synovial membrane/pannus significantly correlates with the severity of rheumatoid arthritis (RA). Although unlikely to be the 'initiators' of RA (if not as antigen-presenting cells in early disease), macrophages possess widespread pro-inflammatory, destructive, and remodeling capabilities that can critically contribute to acute and chronic disease. Also, activation of the monocytic lineage is not locally restricted, but extends to systemic parts of the mononuclear phagocyte system. Thus, selective counteraction of macrophage activation remains an efficacious approach to diminish local and systemic inflammation, as well as to prevent irreversible joint damage.  相似文献   

11.
12.
In about 20% of patients with rheumatoid arthritis, B and T lymphocytes recruited into the inflamed synovium are organized into complex microstructures, which resemble secondary lymphoid organs. The development of such lymphoid aggregates with germinal centers appears to contribute to the pathogenesis of the disease. Growing evidence indicates that chemokines and their receptors control the recruitment and positioning of leukocytes as well as their organization into node-like lymphoid structures. Here, we comment on recent studies highlighting the importance of chemokines in rheumatoid arthritis, in particular of B-cell-activating chemokine-1 in lymphoid neogenesis in the inflamed synovium.  相似文献   

13.
14.
15.
16.
17.
18.
Until the pathophysiology/etiology of rheumatoid arthritis (RA) is better understood, treatment strategies must focus on disease management. Early diagnosis and treatment with disease-modifying antirheumatic drugs (DMARDs) are necessary to reduce early joint damage, functional loss, and mortality. Several clinical trials have now clearly shown that administering appropriate DMARDs early yields better therapeutic outcomes. However, RA is a heterogeneous disease in which responses to treatment vary considerably for any given patient. Thus, choosing which patients receive combination DMARDs, and which combinations, remains one of our major challenges in treating RA patients. In many well controlled clinical trials methotrexate and other DMARDs, including the tumor necrosis factor-alpha inhibitors, have shown considerable efficacy in controlling the inflammatory process, but many patients continue to have active disease. Optimizing clinical response requires the use of a full spectrum of clinical agents with different therapeutic targets. Newer therapies, such as rituximab, that specifically target B cells have emerged as viable treatment options for patients with RA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号