首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vitamin A affects many aspects of T lymphocyte development and function. The vitamin A metabolites all-trans- and 9-cis-retinoic acid regulate gene expression by binding to the retinoic acid receptor (RAR), while 9-cis-retinoic acid also binds to the retinoid X receptor (RXR). Naive DO11.10 T lymphocytes expressed mRNA and protein for RAR-alpha, RXR-alpha, and RXR-beta. DNA microarray analysis was used to identify RXR-responsive genes in naive DO11.10 T lymphocytes treated with the RXR agonist AGN194204. A total of 128 genes was differentially expressed, including 16 (15%) involved in cell growth or apoptosis. Among these was Bcl2a1, an antiapoptotic Bcl2 family member. Quantitative real-time PCR analysis confirmed this finding and demonstrated that Bcl2a1 mRNA expression was significantly greater in nonapoptotic than in apoptotic T lymphocytes. The RXR agonist 9-cis-retinoic acid also increased Bcl2a1 expression, although all-trans-retinoic acid and ligands for other RXR partner receptors did not. Treatment with AGN194204 and 9-cis-retinoic acid significantly decreased apoptosis measured by annexin V staining but did not affect expression of Bcl2 and Bcl-xL. Bcl2a1 promoter activity was examined using a luciferase promoter construct. Both AGN194204 and 9-cis-retinoic acid significantly increased luciferase activity. In summary, these data demonstrate that RXR agonists increase Bcl2a1 promoter activity and increase expression of Bcl2a1 in naive T lymphocytes but do not affect Bcl2 and Bcl-xL expression in naive T lymphocytes. Thus, this effect on Bcl2a1 expression may account for the decreased apoptosis seen in naive T lymphocytes treated with RXR agonists.  相似文献   

3.
4.
5.
Many members of the type II nuclear receptor subfamily function as heterodimers with the retinoid X receptor (RXR). A permissive heterodimer (e.g. peroxisome proliferator-activated receptor/RXR) allows for ligand binding by both partners of the receptor complex. In contrast, RXR has been thought to be incapable of ligand binding in a nonpermissive heterodimer, such as that of thyroid hormone receptor (TR)/RXR, where it has been referred to as a silent partner. However, we recently presented functional evidence suggesting that RXR in the TR/RXR heterodimer can bind its natural ligand 9-cis-RA in cells. Here we extended our study of the interrelationship of TR and RXR. We examined the potential modulatory effect of RXR and its ligand on the activity of TR, primarily using a Gal4-TR chimera. This study led to several novel and unexpected findings: 1) heterodimerization of apo-RXRalpha (in the absence of 9-cis-RA) with Gal4-TR inhibits T3-mediated transactivation; 2) the inhibition of Gal4-TR activity by RXRalpha is further enhanced by 9-cis-RA; 3) two different RXR subtypes (alpha and beta) differentially modulate the activity of Gal4-TR; 4) the N-terminal A/B domains of RXR alpha and beta are largely responsible for their differential modulation of TR activity; and 5) the RXR ligand 9-cis-RA appears to differentially affect T3-mediated transactivation from the Gal4-TR/RXRalpha (which is inhibited by 9-cis-RA) and TRE-bound TR/RXRalpha (which is further activated by 9-cis-RA) heterodimers. Taken together, these results further support our recent proposal that the RXR component in a TR/RXR heterodimer is not silent and, more importantly, reveal novel aspects of regulation of the activity of the TR/RXR heterodimer by RXR and RXR ligand.  相似文献   

6.
The role of nuclear receptor corepressor (NCoR) in thyroid hormone (TH) action has been difficult to discern because global deletion of NCoR is embryonic lethal. To circumvent this, we developed mice that globally express a modified NCoR protein (NCoRΔID) that cannot be recruited to the thyroid hormone receptor (TR). These mice present with low serum T(4) and T(3) concentrations accompanied by normal TSH levels, suggesting central hypothyroidism. However, they grow normally and have increased energy expenditure and normal or elevated TR-target gene expression across multiple tissues, which is not consistent with hypothyroidism. Although these findings imply an increased peripheral sensitivity to TH, the hypothalamic-pituitary-thyroid axis is not more sensitive to acute changes in TH concentrations but appears to be reset to recognize the reduced TH levels as normal. Furthermore, the thyroid gland itself, although normal in size, has reduced levels of nonthyroglobulin-bound T(4) and T(3) and demonstrates decreased responsiveness to TSH. Thus, the TR-NCoR interaction controls systemic TH sensitivity as well as the set point at all levels of the hypothalamic-pituitary-thyroid axis. These findings suggest that NCoR levels could alter cell-specific TH action that would not be reflected by the serum TSH.  相似文献   

7.
8.

Background

Thyroid hormone acts via receptor subtypes (TRα1, TRβ1, TRβ2) with differing tissue distributions, encoded by distinct genes (THRA, THRB). THRB mutations cause a disorder with central (hypothalamic–pituitary) resistance to thyroid hormone action with markedly elevated thyroid hormone and normal TSH levels.

Scope of review

This review describes the clinical features, genetic and molecular pathogenesis of a homologous human disorder mediated by defective THRA. Clinical features include growth retardation, skeletal dysplasia and constipation associated with low-normal T4 and high-normal T3 levels and a low T4/T3 ratio, together with subnormal reverse T3 levels. Heterozygous TRa1 mutations in affected individuals generate defective mutant receptors which inhibit wild-type receptor action in a dominant negative manner.

Major conclusions

Mutations in human TRα1 mediate RTH with features of hypothyroidism in particular tissues (e.g. skeleton, gastrointestinal tract), but are not associated with a markedly dysregulated pituitary–thyroid axis.

General significance

Human THRA mutations could be more common but may have eluded discovery due to the absence of overt thyroid dysfunction. Nevertheless, in the appropriate clinical context, a thyroid biochemical signature (low T4/T3 ratio, subnormal reverse T3 levels), may enable future identification of cases.This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) controls the expression of HIV-1 viral genes and thus viral propagation and pathology. Numerous host factors participate in the regulation of the LTR promoter, including thyroid hormone (T(3)) receptor (TR). In vitro, TR can bind to the promoter region containing the NF-kappa B and Sp1 binding sites. Using the frog oocyte as a model system for chromatin assembly mimicking that in somatic cells, we demonstrated that TR alone and TR/RXR (9-cis retinoic acid receptor) can bind to the LTR in vivo independently of T(3). Consistent with their ability to bind the LTR, both TR and TR/RXR can regulate LTR activity in vivo. In addition, our analysis of the plasmid minichromosome shows that T(3)-bound TR disrupts the normal nucleosomal array structure. Chromatin immunoprecipitation assays with anti-acetylated-histone antibodies revealed that unliganded TR and TR/RXR reduce the local histone acetylation levels at the HIV-1 LTR while T(3) treatment reverses this reduction. We further demonstrated that unliganded TR recruits corepressors and at least one histone deacetylase. These results suggest that chromatin remodeling, including histone acetylation and chromatin disruption, is important for T(3) regulation of the HIV-1 LTR in vivo.  相似文献   

10.
11.
12.
13.
14.
Thyrotoxicosis is frequently associated with increased bone turnover and decreased bone mass. To investigate the role of thyroid hormone receptor-beta (TR beta) in mediating the osteopenic effects of triiodothyronine (T3), female adult rats were treated daily (64 days) with GC-1 (1.5 microg/100 g body wt), a TR beta-selective thyromimetic compound. Bone mass was studied by dual-energy X-ray absorptiometry of several skeletal sites and histomorphometry of distal femur, and the results were compared with T3-treated (3 microg/100 g body wt) or control animals. As expected, treatment with T3 significantly reduced bone mineral density (BMD) in the lumbar vertebrae (L2-L5), femur, and tibia by 10-15%. In contrast, GC-1 treatment did not affect the BMD in any of the skeletal sites studied. The efficacy of GC-1 treatment was verified by a reduction in serum TSH (-52% vs. control, P < 0.05) and cholesterol (-21% vs. control, P < 0.05). The histomorphometric analysis of the distal femur indicated that T3 but not GC-1 treatment reduced the trabecular volume, thickness, and number. We conclude that chronic, selective activation of the TR beta isoform does not result in bone loss typical of T3-induced thyrotoxicosis, suggesting that the TR beta isoform is not critical in this process. In addition, our findings suggest that the development of TR-selective T3 analogs that spare bone mass represents a significant improvement toward long-term TSH-suppressive therapy.  相似文献   

15.
The studies comparing the actions of dried thyroid gland (Thyroideum-Polfa) with L-thyroxine sodium (L-T4) were carried out in 20 female patients with hypothyroidism, including 19 patients with the primary hypothyroidism and 1 patient with hypothyroidism secondary to pituitary deficiency. Administration of the dried thyroid gland did not normalize blood serum T4 an TSH in any patient. Normal serum T4 or even slightly increased was achieved in all patients treated with L-T4. Serum TSH was normalized in 17 patients with the primary hypothyroidism. The following conclusions have been drawn: 1. Dried thyroid gland (Thyroideum-Polfa) is ineffective in the treatment of hypothyroidism. 2. Serum TSH remains elevated despite normal serum T3 in cases of the primary hypothyroidism with decreased serum T4 levels. 3. Sodium salt of L-thyroxine should be used for the treatment of hypothyroidism. 1-Triiodothyronine sodium may be used as an adjuvant therapy.  相似文献   

16.
The prohormone convertases (PCs) PC1 and PC2 are involved in the tissue-specific endoproteolytic processing of neuropeptide precursors within the secretory pathway. We previously showed that changes in thyroid status altered pituitary PC2 mRNA and that this regulation was due to triiodothyronine-dependent interaction of the thyroid hormone receptor (TR) with negative thyroid hormone response elements (nTREs) contained in a large proximal region of the human PC2 promoter. In the current study, we examined the in vivo regulation of brain PC2 mRNA by thyroid status and found that 6-n-propyl-2-thiouracil-induced hypothyroidism stimulated, whereas thyroxine-induced hyperthyroidism suppressed, PC2 mRNA levels in the rat hypothalamus and cerebral cortex. To address the mechanism of T3 regulation of the PC2 gene, we used human PC2 (hPC2) promoter constructs transiently transfected into GH3 cells and found that triiodothyronine negatively and 9-cis-retinoic acid positively regulated hPC2 promoter activity. EMSAs, using purified TRalpha1 and retinoid X receptor-beta (RXRbeta) proteins demonstrated that TRalpha bound the distal putative nTRE-containing oligonucleotide in the PC2 promoter, and RXR bound to both nTRE-containing oligonucleotides. EMSAs with oligonucleotides containing deletion mutations of the nTREs demonstrated that the binding to TR and RXR separately is reduced, but specific binding to TR and RXR together persists even with deletion of each putative nTRE. We conclude that there are two novel TRE-like sequences in the hPC2 promoter and that these regions act in concert in a unique manner to facilitate the effects of thyroid hormone and 9-cis-retinoic acid on PC2.  相似文献   

17.
The thyroid-stimulating hormone (TSH) receptor (TSHR) is a major regulator of thyroid function and growth, and is the key antigen in several pathological conditions including hyperthyroidism, hypothyroidism, and thyroid tumors. Various effective treatment strategies are currently available for many of these clinical conditions such as antithyroid drugs or radioiodine therapy, but they are not devoid of side effects. In addition, treatment of complications of Graves’ disease such as Graves’ ophthalmopathy is often difficult and unsatisfactory using current methods. Recent advances in basic research on both in vitro and in vivo models have suggested that TSH analogs could be used for diagnosis and treatment of some of the thyroid diseases. The advent of high-throughput screening methods has resulted in a group of TSH analogs called small molecules, which have the potential to be developed as promising drugs. Small molecules are low molecular weight compounds with agonist, antagonist and, in some cases, inverse agonist activity on TSHR. This short review will focus on current advances in development of TSH analogs and their potential clinical applications. Rapid advances in this field may lead to the conduct of clinical trials of small molecules related to TSHR for the management of Graves’ disease, thyroid cancer, and thyroid-related osteoporosis in the coming years.  相似文献   

18.
19.
We have studied the regulation of the biosynthesis of thyrotropin (TSH) and its alpha and beta subunits by thyroid hormone in thyrotropic tumors carried in hypothyroid mice. Treatment with 3,5,3'-triiodo-L-thyronine (T3) (20 micrograms/100 g, body weight) daily for 4 or 10 days reduced serum TSH to 3 and 0.3% of control, respectively. Serum levels of free alpha subunit were reduced to 60 and 11% of control at 4 days and 10 days, respectively, and serum free TSH-beta was undetectable at both time points. There was no significant decrease in tumor TSH content after 4 days of treatment and, after 10 days, TSH content was reduced to 15% of control levels. There was no significant effect of T3 on tumor alpha subunit levels at either 4 or 10 days. In contrast, tumor TSH-beta content was markedly reduced after 4 days and 10 days of T3 treatment, to 29 and 10% of control levels, respectively. Translation of tumor poly(A) mRNA in a rabbit reticulocyte lysate system showed that thyroid hormone decreased translatable TSH-beta mRNA to undetectable levels at both 4 and 10 days, whereas translatable alpha mRNA was reduced strikingly only at 10 days in one of two tumors. RNA blot hybridization with 32P-labeled plasmid probes containing alpha or TSH-beta cDNAs showed that TSH-beta mRNA was reduced to less than 10% of control after both 4 and 10 days of T3 treatment, whereas, again, alpha mRNA was only reduced in one of two tumors at 10 days. Our data thus show that thyroid hormone affects alpha and TSH-beta mRNA and protein levels discordantly and suggest that regulation of TSH biosynthesis may occur predominantly at the level of TSH-beta mRNA.  相似文献   

20.
Many members of the thyroid hormone/retinoid receptor subfamily (type II nuclear receptors) function as heterodimers with the retinoid X receptor (RXR). In heterodimers which are referred to as permissive, such as peroxisome proliferator activated receptor/RXR, both partners can bind cognate ligands and elicit ligand-dependent transactivation. In contrast, the thyroid hormone receptor (TR)/RXR heterodimer is believed to be nonpermissive, where RXR is thought to be incapable of ligand binding and is often referred to as a silent partner. In this report, we used a sensitive derepression assay system that we developed previously to reexamine the TR/RXR interrelationship. We provide functional evidence suggesting that in a TR/RXR heterodimer, the RXR component can bind its ligand in vivo. Ligand binding by RXR does not appear to directly activate the TR/RXR heterodimer; instead, it leads to a (at least transient or dynamic) dissociation of a cellular inhibitor(s)/corepressor(s) from its TR partner and thus may serve to modulate unliganded TR-mediated repression and/or liganded TR-mediated activation. Our results argue against the current silent-partner model for RXR in the TR/RXR heterodimer and reveal an unexpected aspect of cross regulation between TR and RXR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号