首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
A family of olfactomedin domain-containing proteins consists of at least 13 members in mammals. Although the first protein belonging to this family, olfactomedin, was isolated and partially characterized from frog olfactory neuroepithelim almost 20 years ago, the functions of many family members remain elusive. Most of the olfactomedin domain-containing proteins, similar to frog olfactomedin, are secreted glycoproteins that demonstrate specific expression patterns. Other family members are membrane-bound proteins that may serve as receptors. More than half of the olfactomedin domain-containing genes are expressed in neural tissues. Data obtained over the last several years demonstrate that olfactomedin domain-containing proteins play important roles in neurogenesis, neural crest formation, dorsal ventral patterning, cell–cell adhesion, cell cycle regulation, and tumorigenesis and may serve as modulators of critical signaling pathways (Wnt, bone morphogenic protein). Mutations in two genes encoding myocilin and olfactomedin 2 were implicated in glaucoma, and a growing number of evidence indicate that other genes belonging to the family of olfactomedin domain-containing proteins may contribute to different human disorders including psychiatric disorders. In this review, we summarize recent advances in understanding the possible roles of these proteins with special emphasis on the proteins that are preferentially expressed and function in neural tissues.  相似文献   

15.
Groucho/TLE proteins are global corepressors that are recruited to target promoters by different families of DNA-binding repressors. As these corepressors are widely expressed, the long-standing view had been that Groucho/TLE-mediated repression is regulated solely by the spatial and temporal distribution of partner repressors. It has recently emerged, however, that Groucho/TLE repressor activity is itself regulated, in a signal induced, context-dependent manner. Here we review the essential roles played by Groucho/TLE factors in different cell-signalling processes that illustrate different modes for regulating Groucho/TLE-mediated repression: (i) via the expression of partner repressors; (ii) by competition with coactivators and (iii) through post-translational modifications of Groucho/TLE. We also discuss how the intrinsic properties of repressors can result in differential responses to Groucho/TLE regulation.  相似文献   

16.
17.
18.
19.
20.
Degringolade (Dgrn) encodes a Drosophila SUMO-targeted ubiquitin ligase (STUbL) protein similar to that of mammalian RNF4. Dgrn facilitates the ubiquitylation of the HES protein Hairy, which disrupts the repressive activity of Hairy by inhibiting the recruitment of its cofactor Groucho. We show that Hey and all HES family members, except Her, interact with Dgrn and are substrates for its E3 ubiquitin ligase activity. Dgrn displays dynamic subcellular localization, accumulates in the nucleus at times when HES family members are active and limits Hey and HES family activity during sex determination, segmentation and neurogenesis. We show that Dgrn interacts with the Notch signaling pathway by it antagonizing the activity of E(spl)-C proteins. dgrn null mutants are female sterile, producing embryos that arrest development after two or three nuclear divisions. These mutant embryos exhibit fragmented or decondensed nuclei and accumulate higher levels of SUMO-conjugated proteins, suggesting a role for Dgrn in genome stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号