首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated whether mesenchymal stem cells (MSCs) overexpressing integrin-linked kinase (ILK) might regulate ventricular remodeling and cardiac function in a porcine myocardial infarction model. ILK-modified MSCs (ILK-MSCs) (n = 8), MSCs (n = 8) or placebo (n = 8) were injected into peri-infarct myocardium 7 days after ligation of the left anterior descending coronary artery. ILK expression was confirmed by immunofluorescence, real-time PCR, Western blot analysis, and flow cytometry. In vitro assays indicated increased proliferation and reduced apoptosis of MSCs due to overexpression of ILK. Echocardiographic, single-photon emission computed tomography and positron emission tomography analyses demonstrated preserved cardiac function and myocardial perfusion. Reduced fibrosis, increased cardiomyocyte proliferation, and enhanced angiogenesis were observed in the ILK-MSC group. Reduced apoptosis, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis, was also noted. In conclusion, ILK promotes MSC proliferation and suppresses apoptosis. ILK-MSC transplantation improves ventricular remodeling and cardiac function in pigs after MI. It is associated with increased angiogenesis, reduced apoptosis, and increased cardiomyocyte proliferation. This may represent a new approach to the treatment of post-infarct remodeling and subsequent heart failure.  相似文献   

2.
We used human angiopoietin-1 (hAng1)-modified mesenchymal stem cells (MSCs) to treat acute myocardial infarction (AMI) in rats. The hAng1 gene was transfected into cultured rat MSCs using an adenoviral vector. Five million hAng-transfected MSCs (MSC(Ang1)) or green fluorescent protein transfected MSCs (MSC(GFP)) or PBS only (PBS group) were injected intramyocardially into the inbred Lewis rat hearts immediately after myocardial infarction. MSC(Ang1) survived in the infarcted myocardium, and expressed hAng1 at both mRNA and protein levels. The vascular density was higher in the MSC(Ang1) and MSC(GFP) groups than in the PBS group. The measurements of infarcted ventricular wall thickness, infarction area, and left ventricular diameter indicated that heart remodeling was inhibited and heart function was improved in both the MSC(Ang1) and MSC(GFP) groups. However, in contrast to the MSC(GFP) group, the MSC(Ang1) group showed enhanced angiogenesis and arteriogenesis (by 11-35%), infarction area was reduced by 30% and the left ventricular wall was 46% thicker (P<0.05). The results indicated that hAng1-modified MSCs improved heart function, followed by angiogenic effects in salvaging ischemic myocardium and reduced cardiac remodeling.  相似文献   

3.
4.
Recent clinical studies have demonstrated that intracoronary infusion of autologous bone marrow cells (BMC) in conjunction with standard treatment may improve left ventricular function after an acute myocardial infarction (AMI). However, the results of these studies remain controversial, as the studies were relatively small in size and partially differed in design. We reviewed primary controlled randomized clinical studies comparing intracoronary transfer of autologous non-mobilized BMC combined with standard therapy versus standard therapy alone in patients with AMI. We identified five randomized controlled clinical trials, three of which were also placebo- and bone marrow aspiration-controlled. Non-mobilized BMC were infused into the revascularized coronary target artery 6.6 +/- 6.1 days after AMI. The mean follow- up period of 5.2 +/- 1.1 months was completed by 482 patients, 241 of which received infusion of BMC. The effect of BMC on left ventricular ejection fraction (LVEF) as a major functional parameter was evaluated. Analyzing the overall effect on the change in LVEF between baseline and follow-up value revealed a significant improvement in the BMCtreated group as compared to the control group (P = 0.04). Thus, considering the increase in LVEF during follow-up, transplantation of BMC may be a safe and beneficial procedure to support treatment of AMI. However, the functional improvement observed with this form of therapy was altogether relatively moderate and the studies were heterogeneous in design. Hence, further efforts aiming at large-scale, double-blind, randomized and placebo-controlled multi-center trials in conjunction with better definition of patients, which benefit from BMC infusion, appear to be warranted.  相似文献   

5.
《Cytotherapy》2021,23(12):1074-1084
Background aimsMesenchymal stromal cells (MSCs) have been shown to improve cardiac function after injury and are the subject of ongoing clinical trials. In this study, the authors tested the cardiac regenerative potential of an induced pluripotent stem cell-derived MSC (iPSC-MSC) population (Cymerus MSCs) in a rat model of myocardial ischemia-reperfusion (I/R). Furthermore, the authors compared this efficacy with bone marrow-derived MSCs (BM-MSCs), which are the predominant cell type in clinical trials.MethodsFour days after myocardial I/R injury, rats were randomly assigned to (i) a Cymerus MSC group (n = 15), (ii) a BM-MSC group (n = 15) or (iii) a vehicle control group (n = 14). For cell-treated animals, a total of 5 × 106 cells were injected at three sites within the infarcted left ventricular (LV) wall.ResultsOne month after cell transplantation, Cymerus MSCs improved LV function (assessed by echocardiography) compared with vehicle and BM-MSCs. Interestingly, Cymerus MSCs enhanced angiogenesis without sustained engraftment or significant impact on infarct scar size. Suggesting safety, Cymerus MSCs had no effect on inducible tachycardia or the ventricular scar heterogeneity that provides a substrate for cardiac re-entrant circuits.ConclusionsThe authors here demonstrate that intra-myocardial administration of iPSC-MSCs (Cymerus MSCs) provide better therapeutic effects compared with conventional BM-MSCs in a rodent model of myocardial I/R. Because of its manufacturing scalability, iPSC-MSC therapy offers an exciting opportunity for an “off-the-shelf” stem cell therapy for cardiac repair.  相似文献   

6.
Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSCs) into the acutely ischemic myocardium. Two weeks postinfarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were twofold stiffer than myocardium from noninfarcted animals but softer than myocardium from vehicle-treated infarcted animals. After 8 wk, the following variables were evaluated: MSC engraftment and left ventricular geometry by histological methods, cardiac function with a pressure-volume conductance catheter, myocardial fibrosis by Masson Trichrome staining, vascularity by immunohistochemistry, and apoptosis by TdT-mediated dUTP nick-end labeling assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated postinfarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.  相似文献   

7.
We tested the hypothesis that left ventricular (LV) remodeling late after myocardial infarction (MI) is associated with myocyte apoptosis in myocardium remote from the infarcted area and is related temporally to LV dilation and contractile dysfunction. One, four, and six months after MI caused by coronary artery ligation, LV volume and contractile function were determined using an isovolumic balloon-in-LV Langendorff technique. Apoptosis and nuclear morphology were determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) and Hoechst 33258 staining. Progressive LV dilation 1-6 mo post-MI was associated with reduced peak LV developed pressure (LVDP). In myocardium remote from the infarct, there was increased wall thickness and expression of atrial natriuretic peptide mRNA consistent with reactive hypertrophy. There was a progressive increase in the number of TUNEL-positive myocytes from 1 to 6 mo post-MI (2.9-fold increase at 6 mo; P < 0. 001 vs. sham). Thus LV remodeling late post-MI is associated with increased apoptosis in myocardium remote from the area of ischemic injury. The frequency of apoptosis is related to the severity of LV dysfunction.  相似文献   

8.
Multipotent germline stem (mGS) cells have been established from neonatal mouse testes. We previously reported that undifferentiated mGS cells are phenotypically similar to embryonic stem cells and that fetal liver kinase 1 (Flk1)+ mGS cells have a similar potential to differentiate into cardiomyocytes and endothelial cells compared with Flk1+ embryonic stem cells. Here, we transplanted these Flk1+ mGS cells into an ischemic heart failure mouse model to evaluate the improvement in cardiac function. Significant increase in left ventricular wall thickness of the infarct area, left ventricular ejection fraction and left ventricular maximum systolic velocity was observed 4 weeks after when sorted Flk1+ mGS cells were transplanted directly into the hearts of the acute ischemic model mice. Although the number of cardiomyocytes derived from Flk1+ mGS cells were too small to account for the improvement in cardiac function but angiogenesis around ischemic area was enhanced in the Flk1+ mGS cells transplanted group than the control group and senescence was also remarkably diminished in the early phase of ischemia according to β-galactosidase staining assay. In conclusion, Flk1+ mGS cell transplantation can improve the cardiac function of ischemic hearts by promoting angiogenesis and by delaying host cell death via senescence.  相似文献   

9.
Human umbilical cord blood (UCB) contains an abundance of immature stem/progenitor cells and has been clinically used as an alternative to bone marrow transplantation. In addition, cord blood can be obtained non-invasively, in contrast to invasive bone marrow aspiration. We investigated the potential of human UCB CD34(+) cells to improve cardiac function following myocardial infarction. Myocardial infarction was induced in Wistar rats by ligation of the left coronary artery. Either 2x10(5) human UCB CD34(+) cells or equivalent cell-free medium was injected into the injured myocardium of the rats following induction of myocardial infarction. CD34(+) cell transplantation significantly improved ventricular function as compared to the control group. Immunofluorescence staining for human CD34, CD45, and PECAM-1 revealed surviving cells in the myocardium. Our findings suggest that transplanted human cells survived and improved cardiac function following myocardial infarction. These results may show the usefulness of UCB CD34(+) cells for myocardial infarction.  相似文献   

10.
11.
为进一步探讨静脉溶栓后冠脉再通对左室功能的有益影响,回顾性分析了88例静脉溶栓急性心肌梗塞(AMI)病人的二维超声心动图和部分病人的冠脉造影资料。根据溶栓再通标准分为再通组和未通组。在AMI发病后平均24.8±11.6天和22.9±24.4天分别进行了心超和冠造检查,观察室壁运动情况并测量左室射血分数(LVEF)。结果显示:未通组LVEF明显低于再通组,而室壁运动异常积分却显著高于再通组。左室扩大和室壁瘤的发生上,两组未发现有统计学差异。以上结果提示:AMI静脉溶栓使冠脉再通对左室功能和室壁运动障碍的改善起到有益的作用。  相似文献   

12.
Regeneration of the myocardium by transplantation of cardiomyocytes is an emerging therapeutic strategy. Human embryonic stem cells (HESC) form cardiomyocytes readily but until recently at low efficiency, so that preclinical studies on transplantation in animals are only just beginning. Here, we show the results of the first long-term (12 weeks) analysis of the fate of HESC-derived cardiomyocytes transplanted intramyocardially into healthy, immunocompromised (NOD-SCID) mice and in NOD-SCID mice that had undergone myocardial infarction (MI). Transplantation of mixed populations of differentiated HESC containing 20–25% cardiomyocytes in control mice resulted in rapid formation of grafts in which the cardiomyocytes became organized and matured over time and the noncardiomyocyte population was lost. Grafts also formed in mice that had undergone MI. Four weeks after transplantation and MI, this resulted in significant improvement in cardiac function measured by magnetic resonance imaging. However, at 12 weeks, this was not sustained despite graft survival. This suggested that graft size was still limiting despite maturation and organization of the transplanted cells. More generally, the results argued for requiring a minimum of 3 months follow-up in studies claiming to observe improved cardiac function, independent of whether HESC or other (adult) cell types are used for transplantation.  相似文献   

13.
Myocardial necrosis triggers inflammatory changes and a complex cytokine cascade that are only incompletely understood. The chemokine receptor CCR1 mediates inflammatory recruitment in response to several ligands released by activated platelets and up-regulated after myocardial infarction (MI). Here, we assess the effect of CCR1 on remodelling after MI using Ccr1-deficient (Ccr1(-)(/-)) mice. MI was induced in Ccr1(-/-) or wild-type mice by proximal ligation of the left anterior descending (LAD). Mice were sacrificed and analysed at day 1, 4, 7, 14 and 21 after MI. While initial infarct areas and areas at risk did not differ between groups, infarct size increased to 20.6+/-8.4% of the left ventricle (LV) in wild-type mice by day 21 but remained at 11.2+/-1.2% of LV (P<0.05) in Ccr1(-/-) mice. This attenuation in infarct expansion was associated with preserved LV function, as analysed by isolated heart studies according to Langendorff. Left ventricular developed pressure was 84.5+/-19.8 mmHg in Ccr1(-/-) mice compared to 49.0+/-19.7 mmHg in wild-type mice (P<0.01) and coronary flow reserve was improved in Ccr1(-/-) mice. An altered post-infarct inflammatory pattern was observed in Ccr1(-/-) mice characterized by diminished neutrophil infiltration, accelerated monocyte/lymphocyte infiltration, decreased apoptosis, increased cell proliferation and earlier myofibroblast population in the infarcted tissue. In conclusion, functional impairment and structural remodelling after MI is reduced in the genetic absence of Ccr1 due to an abrogated early inflammatory recruitment of neutrophils and improved tissue healing, thus revealing a potential therapeutic target.  相似文献   

14.
《IRBM》2014,35(4):182-188
ObjectivesInfarct size is a major surrogate marker for prognosis in the context of myocardial infarction. There is a growing interest in validating a quantitative assessment approach in order to: (1) standardize these analyses; (2) to precise the individual prognosis of our patients. Several methods are available and were tested across their capacity to predict left ventricular (LV) remodeling at three months.Patients and methodsLate gadolinium enhancement-MRI was performed on day 5 and after a period of three months in 92 patients with STEMI. LV volumes and scar parameters were assessed visually (by using a four scale score) and quantitatively on day 5 and at three months. Dichotomous thresholds were defined first visually (VISUAL), then by 2, 5 and 6 standard deviations above remote myocardium, and by the full-width at half-maximum (FWHM) method.ResultsAll infarct sizing methods showed great relation to LV remodeling at three months (ROC analysis). Univariate predictors of an LV end-systolic volume index (LVESVi) superior to 70 mL/m2 were: heart failure, creatin kinase peak and infarct size at day 5. FWHM was shown to be the best of all quantitative methods. An infarct size superior to 44 grams predicted a LVESVi > 70 mL/m2 with a sensitivity of 90% and a specificity of 92.5%. FWHM reproducibility was good (r = 0.895, P < 0.0001, Bland Altman bias of 0.8 g).ConclusionIn the context of STEMI, FWHM is a tough and reproducible algorithm to quantitatively assess late gadolinium hyperenhancement, greatly related to functional prognosis at three months follow-up.  相似文献   

15.
16.
The aim of this study is to evaluate the differences of left ventricular (LV) twist and untwisting rate in patients with acute myocardial infarction (AMI) as compared with healthy subjects by means of Speckle Tracking Imaging (STI). 45 AMI patients (AMI group) and 48 healthy subjects (NOR group) were studied. Two-dimensional STI was performed in all patients. Peak apical rotation, peak basal rotation, peak LV twist, peak basal untwisting rate, peak apical untwisting rate, peak LV untwisting rate, time to peak LV twist, and untwisting rate were measured. In comparison with the NOR group, peak LV rotational parameters were found to be decreased in the AMI group (P < 0.01). A strong correlation was found between the peak LV twist and LV ejection fraction in the overall study population (P < 0.001). The LV twist is strongly related to LV systolic function, and the impairment of LV function observed in patients with AMI is associated with a decrease of LV twist and untwist rate. The STI appears to accurately evaluate LV function.  相似文献   

17.
18.

Background

Expanded endothelial progenitor cells (eEPC) improve global left ventricular function in experimental myocardial infarction (MI). Erythropoietin beta (EPO) applied together with eEPC may improve regional myocardial function even further by anti-apoptotic and cardioprotective effects. Aim of this study was to evaluate intramyocardial application of eEPCs and EPO as compared to eEPCs or EPO alone in experimental MI.

Methods and Results

In vitro experiments revealed that EPO dosed-dependently decreased eEPC and leukocyte apoptosis. Moreover, in the presence of EPO mRNA expression in eEPC of proangiogenic and proinflammatory mediators measured by TaqMan PCR was enhanced. Experimental MI was induced by ligation and reperfusion of the left anterior descending coronary artery of nude rats (n = 8-9). After myocardial transplantation of eEPC and EPO CD68+ leukocyte count and vessel density were enhanced in the border zone of the infarct area. Moreover, apoptosis of transplanted CD31 + TUNEL + eEPC was decreased as compared to transplantation of eEPCs alone. Regional wall motion of the left ventricle was measured using Magnetic Resonance Imaging. After injection of eEPC in the presence of EPO regional wall motion significantly improved as compared to injection of eEPCs or EPO alone.

Conclusion

Intramyocardial transplantation of eEPC in the presence of EPO during experimental MI improves regional wall motion. This was associated with an increased local inflammation, vasculogenesis and survival of the transplanted cells. Local application of EPO in addition to cell therapy may prove beneficial in myocardial remodeling.
  相似文献   

19.
Osteopontin (OPN) plays an important role in left ventricular (LV) remodeling after myocardial infarction (MI) by promoting collagen synthesis and accumulation. This study tested the hypothesis that MMP inhibition modulates post-MI LV remodeling in mice lacking OPN. Wild-type (WT) and OPN knockout (KO) mice were treated daily with MMP inhibitor (PD166793, 30 mg/kg/day) starting 3 days post-MI. LV functional and structural remodeling was measured 14 days post-MI. Infarct size was similar in WT and KO groups with or without MMP inhibition. M-mode echocardiography showed greater increase in LV end-diastolic (LVEDD) and end-systolic diameters (LVESD) and decrease in percent fractional shortening (%FS) and ejection fraction in KO-MI versus WT-MI. MMP inhibition decreased LVEDD and LVESD, and increased %FS in both groups. Interestingly, the effect was more pronounced in KO-MI group versus WT-MI (P < 0.01). MMP inhibition significantly decreased post-MI LV dilation in KO-MI group as measured by Langendorff-perfusion analysis. MMP inhibition improved LV developed pressures in both MI groups. However, the improvement was significantly higher in KO-MI group versus WT-MI (P < 0.05). MMP inhibition increased heart weight-to-body weight ratio, myocyte cross-sectional area, fibrosis and septal wall thickness only in KO-MI. Percent apoptotic myocytes in the non-infarct area was not different between the treatment groups. Expression and activity of MMP-2 and MMP-9 in the non-infarct area was higher in KO-MI group 3 days post-MI. MMP inhibition reduced MMP-2 activity in KO-MI with no effect on the expression of TIMP-2 and TIMP-4 14 days post-MI. Thus, activation of MMPs contributes to reduced fibrosis and LV dysfunction in mice lacking OPN.  相似文献   

20.
The manganese superoxide dismutase (MnSOD) ala16val polymorphism has been associated with various diseases including breast cancer. In the present study, we investigated levels of MnSOD protein, enzymatic activity, and mRNA with respect to MnSOD genotype in several human breast carcinoma cell lines and in mouse embryonic fibroblasts (MEF), developed from the MnSOD knockout mouse, stably expressing human MnSOD-ala and MnSOD-val. In human breast cell lines, the MnSOD-ala allele was associated with increased levels of MnSOD protein and MnSOD protein per unit mRNA. In the MEF transformants, MnSOD activity correlated fairly well with MnSOD protein levels. MnSOD mRNA expression was significantly lower in MnSOD-ala versus MnSOD-val lines. MnSOD protein and activity levels were not related to MnSOD genotype in the transformed MEF, although, as observed in the human breast cell lines, the MEF human MnSOD-ala lines produced significantly more human MnSOD protein per unit mRNA than the human MnSOD-val lines. This suggests that there is more efficient production of MnSOD-ala protein compared to MnSOD-val protein. Examination of several indicators of reactive oxygen species levels, including superoxide and hydrogen peroxide, in wild-type MEF and in MEF expressing similar elevated amounts of MnSOD-ala or val activity did not show differences related to the levels of MnSOD protein expression. In conclusion, in both human breast carcinoma cell lines and MEF cell lines stably transfected with human MnSOD, the MnSOD-ala allele was associated with increased production of MnSOD protein per unit mRNA indicating a possible imbalance in MnSOD protein production from the MnSOD-val mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号